
FPGA JPEG Image Compression
Accelerator

EECS 4840
Yuxiang Chen, Xinyi Chang, Song Wang, Nan Zhao

Electrical Engineering, Columbia University
Prof. Stephen A. Edwards

JPEG Image Compression

 SW

Software to FPGA

➢ 64 pixels x 8 bits/pixel = 256 bits
➢ 256 bits / 32 bits/stream = 16 stream
➢ Input = buffer[i] + buffer[i+1] << 8 + buffer[i+2] << 16 + buffer[i+3] << 24
➢ Decode the 32 bits data in HW
➢ HW waits for 16 write states, then go to the next state - computing DCT

data 4 data 3 data 2 data 1

32 bits

DCT with Loeffler Algorithm

Loeffler Algorithm
● Number of multiplications reach the

theoretical low limit.
● 4 Stages
● MultAddSub Blocks

[1]M. Jridi and A. Alfalou,

Canonical signed digit (CSD) representation

CSD
● Signed representation containing the

fewest number of nonzero bits
● Effective way to carry out constant

multiplier for DCT.
● Number of additions and subtractions will

be minimized.
● Identified common elements in CSD

constant coefficients and shared required
resource

X = 2^a ± 2^b ± 2^c ±…..

[1]M. Jridi and A. Alfalou,

RTL Block Diagram for DCT-1 and DCT-2

 Stage 1 Stage 2 Stage 3 Stage 4

RTL Block Diagram for DCT-2

Quantization

● The step where we actually throw away data.
● Reduce most of the less important high frequency DCT coefficients to zero,
● Lower numbers in the upper left direction and large numbers in the lower right direction

Table 2: Modified Normalization Matrix For Hardware Simplification

Zigzag

Zigzag Scan Order

● Obtain the one-dimensional vectors with a lot of consecutive zeroes

RLC (Run Length Encoding)

Run Category Bit Value ..…. Run Category Bit Value EOB

● Run represents the number of previous consecutive zeros.
● Category represents the bit value length of non-zero value.
● End with EOB when last bits are 0..

DC Huffman Encoding

Algorithm:
➢ dc_diff = dc_current -dc_previous
➢ dc_diff_length = getCategory(dc_diff)
➢ dc_codeword = dc_lookup_table(dc_diff)
➢ register_line = register_line + (ac_codeword << category) + dc_diff

DC Huffman Table

dc_diff

register_line
dc_codeword

dc_codeword_length

getCategory

Quantized
Data

dc_previous

AC Huffman Encoding

Algorithm:
➢ ac_diff_length = getCategory(bit_value)
➢ ac_codeword = ac_lookup_table()
➢ register_line = register_line + (ac_codeword << category) + bit_value

AC Huffman Table

register_line
dc_codeword

dc_codeword_length

getCategory

RLC DATA

bit value

ac_codeword

Bit Stream Compression

1 0 0 0

Algorithm:
➢ Initialized a 1024-bit length register_line,
➢ While (there is data):

■ register_line = (register_line << data_length) + data;
■ total_line_size += data_length

0 0 0 0

1 1 0 0

4 bits

1 0 0 0 1 1 0 0

Old register_line

New register_line

Data 0 0 00

Compressed Data to Software

Algorithm:
➢ register_line << register_length,
➢ do:

■ data_back = register_line[1023:991]
■ Register_line << 32 bits

➢ while(data != 0)

1 0 0 0 1 1 1 0… 32 bits0

32 bits data_out

1024 bits

…

32-bit Avalon Bus Software

Result

1. DCT input: 2. DCT output:

5. RLC output:

6. Bitstream output:
DC: -61 -> (14) -> 111000001
AC: (0, 6)->(0,3,6)->(100,110)->38 100110
 (0, 4)->(0,3,4)->(100,100)->36 100100
 (1, 3)->(1,2,3)->(11011,11)->111 1101111
 (0, 8)->(0,4,8)->(1011,1000)->184 10111000
 (0, 3)->(0,2,3)->(01,11)->7 0111
 (1,-7)->(1,3,000)->(1111001,000)->968 11110010000
 (1,2)->(1,2,2)->(11011,10)->110 1101110
 (1,-2)->(1,2,2)->(11011,01)->109 1101101
 (0,2)->(0,2,2)->(01,10)->6 0110
 (0,2)->(0,2,2)->(01,10)->6 0110
 (2,-1)->(2,1,0)->(11100,0)->56 111000
 (7,1)->(7,1,1)->(11111010,1)->501 111110101
 (0,0)->(1010)->10 1010

3.Quantization output:

4. Zigzag output:

Reference

[1] M. Jridi, A. Alfalou, "A low-power, high-speed DCT architecture for image compression: Principle and implementation,"
18th IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC), 2010, pp. 304-309.

[2] Y. H. Chen , T. Y. Chang and C. Y. Li , "Highthroughput DA-based DCT with high accuracy error-compensated adder
tree" , IEEE Trans. VeryLarge Scale Integr. (VLSI) Syst. , vol. 19 , no. 4 , pp.709 -714 , 2011

[3] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy , "Low-power digital signal processing using approximate adders" ,
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. , vol. 32 , no. 1 , pp.124 -137 , 2013

[4] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power in a multiplier architecture,” J. Low Power
Electron., vol. 7, no. 4, pp.490–501, 2011.

[5] Y. V. Ivanov and C. J. Bleakley, “Real-time h.264 video encoding in software with fast mode decision and dynamic
complexity control,” ACM Trans. Multimedia Comput. Commun. Applicat., vol. 6, pp. 5:1–5:21, Feb. 2010.

[6] Wei-Yi We, National Taiwan University, “An Introduction to Image Compression”

