
csee 4840
Embedded System Design

How Linux Boots on the SoCKit Board

Stephen A. Edwards
Columbia University

2015

�is explains how Linux boots over the network on the SoCKit boards in our lab. It also
explains how the server is con�gured.

Contents

1

1 Overview

�e boot process proceeds as follows

1. �e �rst stage bootloader loads from onboard serial �ash, resets the processor, con�g-
ures the memory controller, and loads the second stage bootloader.

2. �e second stage bootloader sets the board’s Ethernet address, uses dhcp to obtain the
board’s ip address and the address of the tftp/nfs server.

3. �e second stage bootloader uses tftp to download pxelinux.cfg/default, which contains
paths to kernel images, fpga �les, and device tree �les.

4. �e user selects one of these groups by typing on the console.

5. �e second stage bootloader uses tftp to download the kernel image, the device tree,
and fpga bitstream �le, programs the fgpa, and passes control to the Linux kernel.

6. �e Linux kernel enumerates and initializes devices, mounts the root directory with
nfs, then runs /sbin/init, which runs the initialization scripts in /etc/init.d/, eventually
running a getty instance, which prompts for a username and password.

2 �e QSPI Flash Chip

We store the U-Boot bootloader in the qspi onboard �ash chip and instruct the hps to boot
from it so each board does not need an sd card.

2.1 Flashing the QSPI

�ere are a few ways to �ash the qspi, but the easiest is to copy the two bootloader image
�les onto an sd card, boot into U-Boot (e.g., from an sd card) and halt the automatic booting
process by pressing a key during the initial countdown. �is should give the U-Boot command
line.

At the U-Boot command line, verify the contents of the fat �lesystem on the sd, verify that
you can access the qspi �ash chip, load the two bootloader �les into memory, then erase and
�ash the qspi chip with the two �les. �is is done as shown below:

fatls mmc 0:1

sf probe

fatload mmc 0:1 0x2000000 preloader-mkpimage.bin

fatload mmc 0:1 0x2100000 u-boot-01.img

sf erase 0x0000 0x10000

sf write 0x2000000 0x0000 0x10000

sf erase 0x60000 0x40000

sf write 0x2100000 0x60000 0x40000

�is writes the 64K �rst-stage bootloader to address 0 and the 256K second-stage bootloader
to address 0x60000.

�e �rst-stage bootloader is the same for every board, but we customize the second-stage
bootloader by giving each a unique mac address.

2.2 Booting from the QSPI

We want the hps to boot from onboard qspi �ash memory. �ree bootsel jumpers on the
front of the board control the source form which the hps initially boots.

HPS Boot Source Selection
BOOTSEL[2:0] Function

→ 111 3.3V spi Flash Memory
101 3.3V sd/mmc Flash Card
001 FPGA

We want the hps to be able to con�gure the fpga with data downloaded from the server. A
tiny dipswitch on the back of the board, SW6 (SW6.1 – SW6.5), sets msel, which controls
where the fpga loads its con�guration data.

FPGA Con�guration Modes
MSEL[4:0] Function

→ 10000 Passive Serial (from hps), fast por
10001 Passive Serial (from hps), standard por
10010 Active Serial (from onboard epcq �ash), fast por
10011 Active Serial (from onboard epcq �ash), standard por

3 U-Boot

U-Boot is a boot loader with excellent support for arm processors as well as others. Altera
distributes a version with support for the Cyclone V on the SoCKit board.

3.1 Patching and Compiling

I modi�ed two �les in the U-Boot source tree to enable pxe and con�gure the fpga.

common/cmd_pxe.c Moved the call to label_localboot() in the pxe command to run localcmd

a�er loading �les, instead of before.

include/con�gs/socfpga_cyclone5.h Enabled pxe support by adding #de�ne directives and
completely changed the initial variable environment to use pxe and con�gure the fpga.

Compilation of the second-stage bootloader images proceeds as follows:

/opt/altera/13.1/embedded/embedded_command_shell.sh

export ARCH=arm

export CROSS_COMPILE=arm-none-eabi-

export LOADADDR=0x8000

cd u-boot-socfpga

for num in 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

do

echo "#define BOARDNUM \"$num\"" > include/configs/boardnum.h

make mrproper

./MAKEALL socfpga_cyclone5

mv u-boot.img u-boot-$num.img

done

�is generates �les of the form u-boot-02.img, which need to be �ashed to the qspi.

3.2 Boot Script

�e initial U-Boot environment (for the �rst board) is set to

bootargs=console=ttyS0,57600

ethaddr=1c:76:ca:48:40:01

loadaddr=0x3000000

pxefile_addr_r=0x3000000

kernel_addr_r=0x7fc0

fdt_addr_r=0x100

ramdisk_addr_r=0x2000000

fpga=0

fpgadatasize=6AEBD0

updatebootargs=setenv bootargs ${bootargs} ip=${ipaddr}:${serverip}

localcmd=fpga load ${fpga} ${ramdisk_addr_r} ${fpgadatasize} ;

run updatebootargs ; bootm ${kernel_addr_r} - ${fdt_addr_r}

and the boot command is

dhcp ; pxe get ; pxe boot

�e �rst three bytes of each board’s Ethernet are Terasic’s registered pre�x; the next two are
the number of the class; and the last byte indicates the board number (the one thing that
di�ers among boards) in bcd: 0x01, . . . , 0x09, 0x10, . . . , 0x19, 0x20,

When it gets control, the second-stage bootloader

1. Uses dhcp to get its ip address and tftp server address.

2. Uses tftp according to the pxe standard to fetch the pxelinux.cfg/default �le, which
speci�es the pathname for the kernel, the .rbf �le (taken from pxe’s facility for the
initial ramdisk image, initrd), and the device tree �le (pxe’s fdt).

3. Prints a menu of options (pxe labels); the user selects one.

4. Fetches the kernel image, the fpga bitstream, and the device tree blob using tftp.

5. Con�gures the fpga using the just-downloaded bitstream �le.

6. Adds information about the ip address of the board and the the nfs server (assumed
to be the same as the tftp server) to the Linux boot command line.

7. Boots the Linux kernel, informing it about the serial console, its ip adress, the nfs
server address, and the address of the device tree blob.

4 Network Con�guration

We place a server between a local network with all the SoCKit boards and the rest of the
Internet. Among other things, it acts as a network address translator that allows the SoCKit
boards to reach the Internet, but not vice versa.

←DHCP
←TFTP
←NFS→
→NAT→
Server

192.168.1.1
eth1

192.168.1.–

SoCKit board

128.59.–.– �e Internet

128.59.–.–

Workstation

4.1 Static Network Con�guration

Under CentOS, /etc/syscon�g/network-scripts/ifcfg-eth1,

DEVICE=eth1

BOOTPROTO=none

HWADDR=00:04:23:9f:30:16

ONBOOT=yes

HOTPLUG=no

TYPE=Ethernet

NETMASK=255.255.255.0

IPADDR=192.168.1.1

Under Ubuntu, /etc/network/interfaces,

auto eth1

iface eth1 inet static

address 192.168.1.1

network 192.168.1.0

netmask 255.255.255.0

broadcast 192.168.1.255

gateway 192.168.1.1

4.2 Port Forwarding (NAT)

Nat port forwarding (out eth2) using iptables:

/sbin/iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE

Nat port forwarding using the ufw package:

In /etc/default/ufw,

DEFAULT_FORWARD_POLICY="ACCEPT"

In /etc/ufw/sysctl.conf,

net/ipv4/ip_forward=1

Add to /etc/ufw/before.rules right a�er the initial comments

nat Table rules

*nat

:POSTROUTING ACCEPT [0:0]

Forward traffic from eth1 through eth0.

-A POSTROUTING -s 192.168.1.0/24 -o eth0 -j MASQUERADE

don’t delete the ’COMMIT’ line or these nat table rules won’t be processed

COMMIT

5 DHCP Server Con�guration

Our U-Boot setup queries dhcp to get various network parameters, including the board’s ip
address and the address of the tftp server where it downloads the pxe con�guration �le.

Under CentOS, install the dhcpd package. Run dhcp on only one of the interfaces by editing
/etc/syscon�g/dhcpd:

DHCPDARGS=eth1

Under Ubuntu, install the isc-dhcp-server package. Run dhcp on only one of the interfaces by
editing /etc/default/isc-dhcp-server:

INTERFACES="eth1"

�e main con�guration �le is /etc/dhcpd.conf under CentOS; /etc/dhcpd/dhcpd.conf under
Ubuntu. For the 192.168.1.– network, this de�nes the router as 192.168.1.1 (the server), dns
servers (Columbia’s), and will automatically assign network addresses between 20 and 99 to
devices that request them.

We assign �xed addresses to each SoCKit board based on its mac address and tell each the
address of the tftp server.

subnet 192.168.1.0 netmask 255.255.255.0 {

option routers 192.168.1.1;

option subnet-mask 255.255.255.0;

option domain-name-servers 128.59.1.3, 128.59.1.4;

range 192.168.1.20 192.168.1.99;

group { # SoCKit boards

next-server 192.168.1.1; # TFTP server

host board01 {

hardware ethernet 1c:76:ca:48:40:01;

fixed-address 192.168.1.101;

}

host board02 {

hardware ethernet 1c:76:ca:48:40:02;

fixed-address 192.168.1.102;

}

... etc.

}

}

6 TFTP Server Con�guration

Tftp, as its name suggests, is a very simple Internet �le transfer protocol usedmostly for system
bootstrapping applications such as ours. It is insecure (e.g., no usernames or passwords), so
should only be run on protected networks, and only has provisions for downloading and
uploading �les; it cannot list directories, for example.

Under CentOS, you need the xinetd and t�p-server packages; under Ubuntu, xinetd and t�pd.

Under CentOS,

/sbin/chkconfig --level 345 xinetd on

/sbin/chkconfig --level 345 tftp on

Under Ubuntu,

update-rc.d xinted enable

Con�gure it with /etc/xinitd.d/t�p:

service tftp

{

socket_type = dgram

protocol = udp

wait = yes

user = nobody

server = /usr/sbin/in.tftpd

server_args = -s /export

disable = no

bind = 192.168.1.1

flags = IPv4

}

�is puts the root of what �les it can serve at /export, runs it as the nobody user, and binds it
only to the interface associated with 192.168.1.1.

7 PXE Con�guration

Unlike the other servies, pxe is not a daemon by itself but is instead built on dhcp and
tftp. For our purposes, it amounts to a single con�guration �le accessible from tftp as
pxelinux.cfg/default (in the /export directory if tftp is so-con�gured). �e �le consists of a
list of labels, each of which corresponds to a particular running environment (kernel image,
fpga con�guration, device tree blob, and root directory). Here is a representative example.
Note that

prompt 1

default lab2

label lab2

menu label lab2

kernel 2014_groups/lab2/uImage

initrd 2014_groups/lab2/soc_system.rbf

append console=ttyS0,57600 root=/dev/nfs rw

nfsroot=192.168.1.1:/export/2014_groups/lab2/root

fdt 2014_groups/lab2/socfpga.dtb

localboot 1

label lab3

menu label lab3

kernel 2014_groups/lab3/uImage

initrd 2014_groups/lab3/soc_system.rbf

append console=ttyS0,57600 root=/dev/nfs rw

nfsroot=192.168.1.1:/export/2014_groups/lab3/root

fdt 2014_groups/lab3/socfpga.dtb

localboot 1

8 NFS Server Con�guration

Nfs is an Internet protocol for remotely mounting �lesystems. It allows the SoCKit boards to
store their root directories (i.e., the entire �lesystem) on the server.

Under CentOS, install the nfs-utils and nfs-utils-lib packages and

chkconfig nfs on

service rpcbind start

service nfs start

Under Ubuntu, install the nfs-kernel-server package and

service nfs-kernel-server start

�e con�guration �le for nfs is /etc/exports. We export the root �lesystems to the SoCKit
boards and allow the workstations to also mount the relevant directory so �les, such as the
fpga con�guration �le, can be updated.

Export root filesystems to the SoCKit boards

/export/2014_groups 192.168.1.*(rw,no_root_squash,no_subtree_check)

Export to the workstations

/export/2014_groups micro1.ilab.columbia.edu(rw)

/export/2014_groups micro2.ilab.columbia.edu(rw)

/export/2014_groups micro3.ilab.columbia.edu(rw)

... etc.

Glossary

bcd Binary-Coded Decimal: A way to represent decimal (base 10) numbers in binary that
uses four bits per decimal digit.

dhcp Dynamic Host Con�guration Protocol: used to send the ip address and other network
con�guration details to the SoCKit board

dns Domain Name Service: �e Internet protocol that translates names like “google.com”
into ip addresses like 192.168.1.5.

epcq Erasable Programmable Con�gurable Quad: a four-bit-wide serial �ash device that
can hold the fpga’s con�guration bitstream. Not used when we have the bootloader
con�gure the fpga with data from the server.

fat File Allocation Table: �e ms-dos �lesystem typically used to format sd cards.

Flash Nonvolatile memory that can be reprogrammed slowly. Used to hold the bootloader
code.

fpga Field-Programmable Gate Array: e.g., the main Cyclone V chip on the board

hps Hard Processor System: the arm processor and associated peripherals on the Cyclone V
fpga

ip address Internet Protocol address: a 32-bit address typically written in dotted decimal
form, e.g., 192.168.1.12

mac address Media Access Control address: a 48-bit Ethernet address

nfs Network File System: a protocol for mounting a remote disk. Used to enable the Linux
root �lesystem on the server to appear on the board.

por Power On Reset

pxe Preboot eXecution Environment: a protocol that provides information to the board
about which kernel to download, etc. Uses dhcp and tftp.

qspi Quad Serial Peripheral Interface: a variant of the simple, synchronous serial peripheral
interface protocol that uses four data lines (hence “quad”). �e interface between the
hps and an onboard �ash chip.

sd Secure Digital: a �ash card format. �e SoCKit board accepts mini-sd cards.

tftp Trivial File Transfer Protocol: an insecure, very simple way to transfer �les over the
Internet, e.g., the Linux kernel image.

Bibliography

Boot the Arrow SoCKit from QSPI.
http://www.rocketboards.org/foswiki/Documentation/BootTheArrowSoCKitFromQSPI

SoCKit User Manual.
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=

167&No=816&PartNo=4

http://www.rocketboards.org/foswiki/Documentation/BootTheArrowSoCKitFromQSPI
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=816&PartNo=4
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=816&PartNo=4

