

CSEE 4840

EMBEDDED SYSTEMS

“WhaC-A-Mole” Project Design

Spring 2016

Group Members

Astha Agrawal aa375

Jai Sharma js4773

Aditya Bagri aab2234

Georgios Charitos gc2662

Due date: 3-24-16

1) System Block Diagram

 The highest level in our design will be based on the Processor System Block Diagram(Fig1.1).

Most Processors are based on this particular system block.

Figure 1.1: Processor System Block Diagram

 Below we outline in detail the blocks our design includes :

 SRAM Memory: The memory will be provided by Linux so we do not need to implement

it like we did in Lab1.

 SRAM Controller:The memory controller is also included in Linux.

 Nios II Processor: The SoCKit board provides the Altera Nios II processor.

 Avalon Bus:SoCKit board includes the Altera Avalon bus which we will use as Data and

Address bus.

 VGA Display: The monitor for our project as a peripheral

 VGA Display Controller : We will have to create a controller for the VGA Display on the

screen.

 Mouse/Controller: A mouse or a videogame controller will be used as a second

peripheral.

 Audio Output: An audio Output will be required for the different sounds of the game.

 Audio Controller: The audio output will be controlled by its separate controller which

we will design.

All the components and the way they are connected are shown in Fig1.2.

Figure 1.2:Project Block Diagram

SRAM
SRAM

Controller Processor

Avalon Bus

VGA

Controller

VGA

Display

Audio

Controller

Audio

Output

USB

Mouse

2) Hardware Components

Processor & SRAM

 VGA controller reads the variable that represents the position and shape of the bat that is

used to hit the moles. The audio controller reads the variable that represents the current

playing audio.

Variables used that are stored in registers.

Table 2.1: Processor Variables

 SRAM: This is the memory of the whole system. It is hosted on the Linux environment. It is the

intermedia between the processor and the peripherals. SRAM stores the status of the game.

Audio data is stored in the SRAM.

 The Processor: This is used to either read or write data to the SRAM via the Avalon Bus.

Variable Function

Mouse Read

Score Write

Level Write

Bat Write

Mole Write

Time Write

Sound Track Write

VGA Display Controller

 The VGA controller will perform a function similar to the VGA_LED_Emulator we used in Lab3.

It will send and receive a number of variables through input ports to and from the memory. The

output ports determine the image on the 640x480 display. Table 2.2 names and describes the

ports for these variables.

Port Name IN/OUT Function

LEVEL IN

Passes information about the game
level.The background also is asociated

with the level since it will have a
different colour for different levels

BAT IN
The bat represents the cursor's

position on the screen

TIME IN Timer starting at 3min for each level

SCORE IN
Score depending on the number of

stikes

MOLE IN Mole's position on the screen

VGA_CLK OUT VGA Display CLK

VGA_SYNC_n OUT VGA Synchronizer

VGA_HS OUT VGA Horizontal Synchroniser

VGA_VS OUT VGA Vertical Synchroniser

VGA_BLANK_n OUT VGA Display Blank Signal

VGA_R OUT VGA pixel red

VGA_G OUT VGA pixel green

VGA_B OUT VGA pixel blue

Table 2.2: VGA Controler Ports

Figure 2.1: VGA Display Controller Block with ports

Avalon Bus

VGA Controller VGA Display

LE
V

EL

B
A

T

B
A

C
K

G
R

O
U

N
D

M
O

LE

SC
O

R
E

TI
M

ER

RGB

VGA_CLK

VGA_HS

VGA_VS

VGA_BLANK

VGA_SYNC

Audio Controller

The Audio:

Figure 2.2:Audio Controller Block ports

SRAM

SRAM

Controller
Processor

Avalon Bus

Sound

Controller

Sound

Hardware

Audio

Codec

 The processor controls SRAM to transfer audio files to audio peripherals.

 Audio Codec is the audio function chip on the SoCKit board.

 The Sound Hardware consists of the SystemVerilog code that is used to

control the chip by providing it clocks and transferring audio data into it.

 The Sound controller maps the audio part into the bus-memory-processor

system.

 The processor receives the C code that decides when to play what audio.

3) Software Components

VGA DISPLAY DRIVER

 The project’s software will communicate with the VGA controller through the VGA display

driver which will be compiled into the kernel. In Fig3.1 we show the Linux Operating System

Structure:

 Figure 3.1: Linux Operating System Structure

 The top level C program will communicate with the VGA driver through ioctl requests. The

driver will call functions to “talk” to the VGA controller device. Interrupts from other

peripherals like the mouse are also handled by the driver.

USB Mouse

 We will create a C program in order to create a path from the mouse peripheral to the

processor. The software will use libusb and threads in order to send a data package to the

processor. A similar work was done in Lab2 but it involved communication through the

keyboard. There is a simple data exchange between the PC and the mouse. The PC asks the

mouse if there is new data available each time, the mouse will send the data if it is available,

otherwise it will send a NACK (No Acknowledge) to tell the PC that there is no data available.

Data sent to the PC have the structure below in Fig 3.2.

Figure 3.2: Mouse Date Packet sent via USB

 Byte 3 has information about the wheel which is not used in our application.

 Byte 2 is the y position of the cursor.

 Byte 1 is the x position of the cursor.

 Byte 0:

o Bits 0-2 are the left, right and middle button respectively.

o Bits 7-3 are all 0.

Audio Controller

 The sound data are arrays of 16-bit sample values, if sample values are aligned in

sequence, they will appear as sound wave. Audio codec makes sounds by aligning

sample values in sequence and convert them into analog signals.

 There are two types of sounds that we have to deal with: the background music

and the sound effects for particular situation such as hit/miss a mole, mole

popping in/out and so on. Since the audio to play is of 16 bit we cannot let that

register overflow and so we have to add these two types in such a way that the

scale of audio to play remains at 1. How we achieve this is as: when no sound

effects are triggered, the audio to play is simply the background music playing at

volume scale 1. When sound effects are triggered, we cannot simply add the

sound effects to the background music and so we add them in a weighted fashion

wherein the sound effects are multiplied by a fraction that is larger than the

fraction multiplied to the background music, and such that the scaled sum is 1.

REFERENCES

[1] ATMEL: AVR270: USB Mouse Demonstration

