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Motivation
- Understanding graphs is a common skill
- Manipulating them and implementing 

graph algorithms has lots of overhead
- There has to be a better way!!!!



Dijkstra’s Algorithm from Wikipedia 
create vertex set Q

  for each vertex v in Graph:             
      dist[v] ← INFINITY                  
      prev[v] ← UNDEFINED                 
      add v to Q                          

  dist[source] ← 0                        
  
  

while Q is not empty:
      u ← vertex in Q with min dist[u]    
      remove u from Q 
      
      for each neighbor v of u:           
          alt ← dist[u] + length(u, v)
          if alt < dist[v]:               
              dist[v] ← alt 
              prev[v] ← u



Dijkstra’s Algorithm in YAGL
def minDistU( vertices ){
   minVertex = 0
   qCounter = 0
   minDistSoFar = INF
   forKeyValue( i, v, vertices ){
      thisDist = v.dist
      if( thisDist < minDistSoFar ) {
         minDistSoFar = thisDist
         minVertex = qCounter
      }
      qCounter = qCounter + 1
   }
   return( minVertex )
}

def dijkstras( G, source ){
  Q = []
  forKeyValue( label, v, v( G ) ){
      v.dist = INF
      v.prev = NULL
      append( v(G)[ label ], Q )
  }
  v(G)[source].dist = 0
  while( not isEmpty( Q ) ){
    u = remove( minDistU(Q), Q )
    forKeyValue( i, v, adj( G, u ) ) {
      alt = u.dist + e(G)[ edgeLabel( u, v )].length
      if ( alt < v.dist ) {
        v.dist = alt
        v.prev = u
      }
    }
  }
}



Unique YAGL Syntax
Native Alias

INF > 0
-INF < 0
false == 0
true == 1

Float/Int Interchangeability

4/2 == 2.000
1 == 1.0
false == 0.0
true == 1.0

Print Returns the value

Return( print( 10 ) )



Unique YAGL syntax
Map Access

a = {| 'key1' := 1, 'key2' := 'two' 
|}
a.key3 = ['three']
a.key4 = {| 'key5' := '5' |}
a.key4.key5 = '6'
print( a.key1 )
print( a.key2 )
print( a.key3[0] )
print( a['key4'].key5 )



Unique YAGL syntax
Map Access Extends to Graph Property Access

forKeyValue( label, v, v( G ) ){
      v.dist = INF
      v.prev = NULL
}

i = 0
forKeyValue( label, edge, e( G ) ){
      edge.weight = i
      edge.capacity = 10
      edge.randomAttribute = []
      i = i + 1
}



Unique YAGL Syntax
forKeyValue

a = ['zero','one','two']
b = {||}
forKeyValue( k, v, a ) {
  b[v] = k
}
isEqual( b ,{|'zero' := 0, 'one' := 1, 'two' := 2 |} 
)
k == 2
v == 'two'



How to make this easy for the programmer
● Dynamic Type

○ User does not have to declare type

● Native Graph
○ Native graph type
○ Easy access of vertices & edges 
○ Arbitrary attributes possible → very diverse set of capabilities

● Pass by reference to functions
○ Allows functions to behave as they do in CLRS

● Standard Library
○ Standard library encapuslates common use cases isEmpty, enqueue/dequeue, push/pop, 

deep copy, isIn
○ Frees user to perform higher level operations



Code Generation: Dynamic Typing
● LLVM is not dynamically typed. How does one implement a dynamic language with it?
● Our idea: make all expressions, as well as function arguments and return, have a single type: a 

struct which contains pointers to the different YAGL types.
○ numbers
○ strings
○ lists
○ maps
○ graphs

● No more than one pointer in a struct should be non-null at any time
● When accessing a struct in an expression, find the pointer that isn't null. If its type isn't valid 

within the expression, abort with a type error message.
● ERROR: Expected item of type:

0
ERROR: found item of type:
1
{| 'NULL' := -1, 'Num' := 0, 'String' := 1, 'List' := 2, 'Map' := 3, 'Graph' := 4 |}



Code Generation: Variable Scope
● Variables in YAGL are scoped within a function, but not within blocks. For example, if a variable 

is defined in an if/else block, it will still be defined afterwards outside of the while block.
● To generate code for this, we separated every function in LLVM into two main blocks:

○ Variable allocation block, which breaks to the
○ Block for everything else

● Maintain two builders: one for the variable allocation block, and one for everything else. 
Whenever we see a variable assignment expression for a variable we have not yet seen, 
allocate space for it in the variable allocation block. Otherwise, use the normal builder.

● In some sense, this is similar to C’s notion of defining all locals in a function first.



Lessons Learned
● Implementing dynamic typing is not easy! Ultimately, it just pushes type 

checking, which is relatively easy in Ocaml, to LLVM, which makes it a lot 
harder.

● We should have invested more time into directly writing helper functions 
like type checkers in C and LLVM, rather than try to generate code for 
them in Ocaml

● Implementing a compiler in 3-4 weeks is really hard


