YAGL

= ANthony Alvarez and David DiNg s

Presentation Outline

Motivation

Sample Code (Dijkstra’'s Algorithm)

Unique YAGL syntax

How to make this easy for the programmer
Aspects of Code Generation

Lessons Learned

o hs WN =

Motivation v

CHARLES E.

ROMALD L.

- Understanding graphs is a common skill BN T
Manipulating them and implementing
graph algorithms has lots of overhead
- There has to be a better way!!!!

CORMERN
LEISERSON
RIVEST

STEIN

Dijkstra’s Algorithm from Wikipedia

create vertex set Q while Q is not empty:
U « vertex in Q with min dist[u]

for each vertex v in Graph: remove u from Q

dist[v] < INFINITY

prev[v] < UNDEFINED for each neighbor v of u:

addvtoQ alt — dist[u] + length(u, v)

if alt < dist[v]:

dist[source] < 0 dist[v] < alt

prev[v] <« u

Dijkstra’s Algorithm in YAGL

def minDistU(vertices) { def dijkstras(G, source) {
minVertex = 0 Q = [1
gCounter = 0 forKeyValue(label, v, v(G)){
minDistSoFar = INF v.dist = INF
forKeyValue(i, v, vertices) { v.prev = NULL
thisDist = v.dist append(v(G)[label], Q)
if(thisDist < minDistSoFar) { }
minDistSoFar = thisDist v (G) [source] .dist = 0
minVertex = gCounter while(not isEmpty(Q)) {
} u = remove(minDistU(Q), Q)
gCounter = gCounter + 1 forKeyValue(i, v, adj(G, u)) {
} alt = u.dist + e(G) [edgelabel(u, v)].length
return(minVertex) if (alt < v.dist) {
} v.dist = alt

v.prev = u

Unique YAGL Syntax

Native Alias Print Returns the value
INF > 0 Return(print(10))
-INF < O
false ==
true ==

Float/Int Interchangeability

4/2 == 2.000
1=1.0

false == 0.0
true == 1.0

Unique
Map Access

a = {|
|'}

a.key3
a.key4
a.key4d.
print(
print(
print(
print(

YAGL syntax

'keyl' =1, 'key2' := 'two'

= ['three']

= {| 'key5' :='3"' |}
key5 = '6'

a.keyl)

a.key2)

a.key3[0])

al['key4'] .key5)

Unique YAGL syntax

Map Access Extends to Graph Property Access

forKeyValue(label, v, v(G)){
v.dist = INF
v.prev = NULL

i=0

forKeyValue(label, edge, e(G)){
edge.weight = i
edge.capacity = 10
edge.randomAttribute = []
i=1i+1

Unique YAGL Syntax

forKeyValue

a = ['zero',6 'one', 'two']

b= {1}

forKeyValue(k, v, a) {
b[v] =k

}

isEqual(b ,{]|'zero' := 0, 'one' :

)
k == 2

v == 'two'

How to make this easy for the programmer

e Dynamic Type

o User does not have to declare type
e Native Graph

o Native graph type

o Easy access of vertices & edges

o Arbitrary attributes possible — very diverse set of capabilities
e Pass by reference to functions

o Allows functions to behave as they do in CLRS

e Standard Library

o Standard library encapuslates common use cases isEmpty, enqueue/dequeue, push/pop,

deep copy, isIn
o Frees user to perform higher level operations

Code Generation: Dynamic Typing

e LLVMis not dynamically typed. How does one implement a dynamic language with it?
e Ouridea: make all expressions, as well as function arguments and return, have a single type: a
struct which contains pointers to the different YAGL types.
o numbers

o strings
o lists

o maps
o graphs

e No more than one pointer in a struct should be non-null at any time
e When accessing a struct in an expression, find the pointer that isn't null. If its type isn't valid

within the expression, abort with a type error message.
e ERROR: Expected item of type:

0

ERROR: found item of type:

1

{I 'NULL' := -1, 'Num' := 0, 'String' := 1, 'List' := 2, 'Map' := 3, 'Graph' := 4 |}

Code Generation: Variable Scope

e Variables in YAGL are scoped within a function, but not within blocks. For example, if a variable
is defined in an if/else block, it will still be defined afterwards outside of the while block.
e To generate code for this, we separated every function in LLVM into two main blocks:
o Variable allocation block, which breaks to the
o Block for everything else
e Maintain two builders: one for the variable allocation block, and one for everything else.
Whenever we see a variable assighment expression for a variable we have not yet seen,
allocate space for it in the variable allocation block. Otherwise, use the normal builder.
e Insome sense, this is similar to C's notion of defining all locals in a function first.

Lessons Learned

Implementing dynamic typing is not easy! Ultimately, it just pushes type
checking, which is relatively easy in Ocaml, to LLVM, which makes it a lot
harder.

We should have invested more time into directly writing helper functions
like type checkers in C and LLVM, rather than try to generate code for
them in Ocaml

Implementing a compiler in 3-4 weeks is really hard

