
Macaw
Mathematical Calculation Language

William Hom wh2307
Yi Jian yj2376

Joseph Baker jib2126

Introduction and Motivation
Many commercial languages support basic mathematical types like integers, floats, and vectors
(as arrays typically). However, popular languages often require additional libraries to allow
users to perform matrix operations, even if the language supports multi-dimensional arrays.
Often only specialized mathematical languages like Matlab or R have full support for matrix
calculations. Macaw is a Matlab- and R-inspired language that provides a matrix data type and
by allowing a simple operator overloading mechanism is able to provide a standard library of
matrix manipulation functions.

Language Description
Macaw is a strongly typed, imperative language that supports simple flow control, looping, and
user defined function constructs. User-defined functions can be aliased to operators to allow
vector and matrix computation to resemble the equations that users are familiar with.

Language Keywords

Float, Int, Matrix, String, Vector, else, for, function, if, in,
print, raise, return, while

Data Types / Structures:

Denotes Comments

Integers
a <- 5;
b <- 9;

Floats
f <- 8.0;

Vectors
v <- [1, 2, 3];
w <- 1:4;
w = [1, 2, 3, 4]
x <- [](3);
x = [0, 0, 0]

Strings
s <- “Hello ”;
t <- "There";

Matrices
m <- [1, 3, 6; 8, 2, 0];
m = [1, 3, 6;
8, 2, 0]
n <- [;](2,5);
n = [0, 0, 0, 0, 0;
0, 0, 0, 0, 0]

Operators
Comparison: a and b must be
same type. Returns 1 or 0
Language supports for Int and
Float
a = b;
a != b;
a < b;
a <= b;
a > b;
a >= b;

'Boolean' Composition: non-0
Int/Float are true, 0 = false
Returns 1 or 0
a & b;
a | b;

Math: a and b must be same type
Language supports these for
Int and Float
a + b;
a - b;
a * b;
a / b;

String Concat
s + t;

Parens
(a + b) + c;

Array/Matrix Access
Access indices are 1-based
a <- v[2];
a = 2
b <- m[2;2];
b = 2

Assignment
v[2] <- 9;
v = [1, 9, 3]
m[1;1] <- 3;
m = [3, 3, 6;
8, 2, 0]

Shape
length <- v.len;
row_count <- m.rowlen;
col_count <- m.collen;

Exceptions
raise halts execution with the
given error message
raise "Can't divide by zero!";

Printing
Print outputs argument to the
console
a <- 5;
print a;
a = 5

Flow Control
If / Else
if a = b {
 a <- 5;
}
else {
 a <- 8;
}

Loops
sum <- 0;
for i in 1:v.len {
 sum <- sum + v[i];
}
while a != 0 {
 a <- a - 1;
}

Functions
User defined function
function gcd(Int a, Int b) {
 while a != b {
 if a > b {
 a <- a - b;
 }
 else {
 b <- b - a;
 }
 }
 return a;
}

a <- gcd(12, 8);
a = 4

Recursive user defined function
function factorial(Int n) {
 if n == 0 {
 return 1;
 }
 else {
 return factorial(n - 1) * n;
 }
}

b <- factorial(4);
b = 24

Operator Extending
function declaration followed
by the ~ symbol and the
operator to extend. See note
below for more info.
function matrix_add(Matrix a,
Matrix b) ~ + {
 c = [;](a.rowlen, a.collen);
 for i in 1:a.rowlen {
 for j in 1:a.collen {
 c[i;j] <- a[i;j] + b[i;j];
 }
 }
 return c;
}

a <- [1,2;3,4];
b <- [5,6;7,8];
c <- a + b;
c = [6, 8;
10, 12]

function matrix_transpose(Matrix
a) ~ ' {
 b <- [;](a.collen, a.rowlen)
 for i in 1:a.rowlen {
 for j in 1:a.collen {
 b[j;i] <- a[i;j];
 }
 }
 return b;
}

a <- [1,2;3,4;5,6]
a = [1,2;
3,4;
5,6]
b <- a';
b = [1,3,5;
2,4,6]

Note about Operator Extension

Operator extension simply allows a user-defined function to be aliased by a symbolic operator
and allows for a nicer rearrangement of the arguments. Rather than calling matrix_add(a,
b), users can invoke that function by calling a + b. The types of a and b determine which
function will be used. When invoking the function, if the function is a unary function, the alias
follows the single argument. If the function has a pair of arguments, the alias symbol is in
between the arguments. Only certain operators are valid for function extending via the ~
operator and language operators cannot be overridden (for instance a user cannot alias a
function onto Int + Int). Extensible operators are (in order of decreasing precedence):

' ^ * .* / ./ % + - = != > < >= <=

Operator Associativity
Composition of an operators is left-associative. For example, a + b + c is evaluated in the
same way as (a + b) + c.

Sample Program
We intend to write a standard library with common matrix operations similar to the addition and
transpose function we wrote above in the operator extension section. The following program

assumes that transpose, dot product, and addition function have been defined for arguments
of matrix, vector, and integer types.

The following program uses Taylor's Theorem to approximate the values of a function sin(x)
+ sin(y) around the coordinate (0.5, 0.5). Using this theorem we are able to
approximate this function without having access to the sin function. We simply have to
precompute some matrices which we have included. This shows that with even the basic
matrix operations users can write code to approximate a rich set of mathematical functions.

v is a vector of size 2 [x, y]
approximate_sin returns an approximation of sin(x) + sin(y) at
(0.5,0.5) + v using Taylor's Theorem
function approximate_sin(Vector v) {

H <- [-0.4794, 0; 0, -0.4794];
g <- [0.8776, 0.8776];
f <- 0.9589;

 approx <- f + (g * v') + 0.5 * ((H * v')' * v');
 # approx is a 1x1 matrix
 return approx[1;1]
}

a <- approximate_sin([0.02, 0.05]);
a = 1.01964 1

b <- approximate_sin([0.1, 0.09]);
b = 1.1213

1 Answer calculated using Wolfram Alpha with the expected behavior of our language and algorithms with this
user defined function.

