
COMS W4115 Programming Languages and Translators

Liva Project Proposal, summer 2016
	

Shanqi	Lu	 Jiafei	Song	 Zihan	Jiao	 Yanan	Zhang	
sl4017	 js4984	 zj2203	 yz3054	

	
1 Introduction

Liva	is	a	general-purpose	programming	language	and	a	lite	version	of	Java.	Having	realized	
that	the	focus	of	this	project	should	be	applying	compiler	design	theories	in	practice	rather	than	
innovation,	we	decided	to	develop	a	language	that	has	the	similar	syntax	and	abstract	data	types	
in	Java.	Past	projects	related	to	general-purpose	languages	all	have	their	own	interesting	features	
like	Cpi	 (2013)	 implemented	a	data	 type	called	“struct”	and	Dice	 (2015)	developed	their	own	
version	of	inheritance	mechanism.	Our	preference	is	to	develop	the	object-oriented	model	that	
resembles	Java	and	implement	data	structures	like	Map	and	List.	This	language	is	compiled	down	
to	LLVM.	
	
2 Description

Unlike	 domain-specific	 programming	 languages	 are	 designed	 for	 specific	 fields,	 our	
language	is	designed	for	general	purpose,	hence	serving	as	a	portable	language	that	runs	on	many	
platforms	as	long	as	LLVM	is	runnable.	Programs	written	in	Liva	will	look	like	Java	in	many	ways	
including	variable	declaration	and	class	declaration.	Common	algorithms	like	GCD	can	be	easily	
implemented	using	our	language.		

We	will	complete	the	HashMap	class	to	make	Liva	support	more	algorithms	which	need	
map	data	 structure.	HashMap	maintains	 key-value	 pairs	 and	 their	mapping	 relationship.	 It	 is	
efficient	for	locating	a	value	based	on	a	key	which	is	an	operation	appears	very	often	in	common	
algorithms.		

	
3 Key Features

3.1 Arithmetic Calculations

Our	language	should	support	basic	calculations	by	using	arithmetic	operators	like	“+”,	“-”,	
“*”,	“/”,	“%”,	etc.	

	
3.2 Control Flows and Basic Operators

Control	Flow	tokens	and	basic	operators	should	include:		if,	else,	for,	==,	!=,	etc.			
	

3.3 Object-oriented programming
Our	 language	should	allow	users	 to	create	 their	own	classes	 (along	with	methods	and	

attributes).	

3.4 Strings
The	String	class	represents	character	strings.	All	string	literals	in	our	programs,	such	as	

"abc",	are	implemented	as	instances	of	this	class.	The	String	class	includes	the	following	methods:	
	

charAt(int index) Returns the char value at the specified index.

length() Returns the length of this string.

split(String regex) Splits this string around matches of the given regular expression.

toCharArray() Converts this string to a new character array.

3.5 Data structures

Our	 language	 supports	 several	 implementations	 of	 common	 data	 structures	 including	
array	and	HashMap	as	well	as	their	key	methods.	The	HashMap	class	should	contain	the	following	
methods.	In	addition,	we	allow	users	to	use	instances	of	user-defined	classes	to	build	a	HashMap.		

clear() Removes all of the mappings from this map.

containsKey(Object key) Returns true if this map contains a mapping for the specified key.

put(K key, V value) Associates the specified value with the specified key in this map.

get(Object key) Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.

keySet() Returns a Set view of the keys contained in this map.

	
4. Example Code
4.1 Arithmetic Calculations Example
Example	of	adding	integers:	

public class cal {
 public void main(char[][] args) {
 print(15+15);
 }
}

4.2 Strings Example
Example	of	string	class:	

import Liva.stdlib;
public class testS{
 private class String x;
 public void main(char[][] args) {
 class String msg = new String("Thanks a lot!");
 this.x = msg;

 print(this.x.string());
 }
}

4.3 Boolean Example
Example	of	Boolean	expression:	

public class testB {
 public void main(char[][] args) {
 print(100<200);
 print(45>2);
 print(2==3);
 print (2 !=100);
 }
}

4.4 Array Sort Example
Example	of	using	Array	in	Utility,	control	flows	and	function:	

import Liva.util;
Import Liva.Exception;
public class MainClass {
 public void main(String args[]) throws Exception {
 int array[] = { 2, 5, -2, 6, -3, 8, 0, -7, -9, 4 };
 Arrays.sort(array);
 printArray("Sorted array", array);

 }
 private void printArray(String message, int array[]) {

 for (int i = 0; i < array.length; i++) {
 if(i != 0){
 print(", ");
 }
 print(array[i]);
 }
 print();
 }
}

4.5 Object-Oriented Programming Example
The	Liva	language	supports	the	Object-Oriented	Programming	(OOP).	

4.5.1 Classes
Everything	in	Liva	is	defined	in	a	class	which	defines	a	collection	of	data.	
Example:	

class Student {
 String name;
 String ssn;
 String emailAddress;
 int yearOfBirth;

}

4.5.2 Objects
Example	of	creating	and	using	instances	of	the	Student	class:	

import Liva.util;

public class StudentDemo {
 public void main(String[] args) {
 Student e1 = new Student ();
 e1.name = "yanan";
 e1.ssn = "888-12-345";
 e1.emailAddress = " shanqi@company.com";
 Student e2 = new Student();
 e2.name = "shanqi";
 e2.ssn = "456-78-901";
 e2.yearOfBirth = 1992;
 print("Name: " + e1.name);
 print("SSN: " + e1.ssn);
 print("Email Address: " + e1.emailAddress);
 print("Year Of Birth: " + e1.yearOfBirth);
 print("Name: " + e2.name);
 print("SSN: " + e2.ssn);
 print("Email Address: " + e2.emailAddress);
 print("Year Of Birth: " + e2.yearOfBirth);
 }
}

4.5 HashMap Example
Example	of	using	HashMap	in	Liva:	

import Liva.util
public class Program {
 public void main(String[] args) {

 HashMap<String, String> hash = new HashMap<>();
 hash.put("zihan", "EE");
 hash.put("jiafei", "CS");
 hash.put("shanqi", "EE");
 hash.put("yanan", "CS");
 String major1= hash.get("zihan");
 String major2= hash.get("jiafei");
 print(major1);
 print(major2);
 Set<String> keys = hash.keySet();
 for (String key : keys) {
 print(key);
 }
}

	

