
Scala−−
Language Reference Manual

Contents
1 Introdution 2

2 Lexical syntax 2
2.1 Identifiers . 2
2.2 Keywords . 2

2.2.1 Statements and blocks 2
2.2.2 Functions . 2
2.2.3 Pattern matching 2
2.2.4 Control flow . 2
2.2.5 Types . 3
2.2.6 Built-in functions 3

2.3 Literals . 3
2.3.1 Integer . 3
2.3.2 Floating point 3
2.3.3 Boolean . 3
2.3.4 Character . 3
2.3.5 String . 3
2.3.6 Escape sequence 4

2.4 Punctions . 4
2.5 Comments and whitespace 4
2.6 Operations . 4

2.6.1 Value binding . 4
2.6.2 Operators . 4

3 Syntax 5
3.1 Program structure . 5

3.1.1 Variable declarations and type inference 5
3.1.2 Function declarations 6

3.2 Expressions . 6
3.2.1 Primary expressions 6
3.2.2 Precedence of operations 6

3.3 Statements . 6
3.3.1 Assignments . 6
3.3.2 Blocks and control flow 7

4 Scoping rules 8

5 Standard library and collections 8
5.1 println, map and filter 8
5.2 Array . 8
5.3 List . 9

6 Code example 9
6.1 Hello World . 9

1

7 Reference 9

1 Introdution
This manual describes Scala−−, a primitive static scoping, strong static
typing, type inferred, functional programming language with immutable
data structures, simple pattern matching and specialized emphasis on
type inference. Scala−− written in OCaml syntactically resembles a
small subset of Scala functionalities with educational purpose, that
compiles to the LLVM Intermediate Representation. Several standard
library functions and data structures including map, filter, List and
Map are implemented in the Scala−−, providing relatively advanced
immutabe operations, demonstrated the possibility of becoming a gen-
eral purpose programming language. This manual describes in detail
the lexical conventions, type systems, scoping rules, standard library
functions, data structures and the gramar of the Scala−− language.

2 Lexical syntax

2.1 Identifiers
In Scala−−, there is only one way to form an identifier. It can start
with a letter which can be followed by an arbitrary sequence of letters
and digits, which may be followed by underscore ’_’ characters and
following similar sequences, which can be defined by the following regular
expression:

[’a’ - ’z’ ’A’ - ’Z’][’a’ - ’z’ ’A’ - ’Z’ ’0’ - ’9’ ’_’]*

2.2 Keywords
Scala−− has a set of reserved keywords that can not be used as identi-
fiers.

2.2.1 Statements and blocks

The following keywords indicate types of statement or blocks:
var val object final

2.2.2 Functions

The following keyword is reserved for function-related purpose:
def main

2.2.3 Pattern matching

The following keywords are reserved for pattern matching-related pur-
poses:

match with case Some _

2.2.4 Control flow

The following keywords are used for control flow:
if else return for do while yield until to break <-

2

2.2.5 Types

The following primitive type keywords resemble Scala’s object type:
Int Float Char Boolean :

2.2.6 Built-in functions

The following keywords are reserved for built-in functions and/or data
structures:

random, max, min, floor, map, filter, println, Map, List,
Array, Tuple, insert, remove, ++, ++=, ->

2.3 Literals
Scala−− supports boolean, integer, float, character, string, escape
sequence, symbol literals.

2.3.1 Integer

The following regular expression defines a decimal digit:
digit = [’0’ - ’9’]
An integer of type Int is a 64-bit signed immutable value consisting

of at least one digit taking the following form:
digit+

2.3.2 Floating point

Floating point numbers can be represented as exponentials as the fol-
lowing regular exressions:

exp = ’e’ [’+’ ’-’]? [’0’ - ’9’]+
So in general, floating point numbers take the following regular

expression:
digit’.’digit[exp] | ’.’digit[exp] | digit exp | digit [exp]

2.3.3 Boolean

Boolean literals are the following:
boolean = ["true" | "false"]

2.3.4 Character

Characters are single, 8-bit, ASCII symbols.
char = [’a’ - ’z’] | [’A’ - ’Z’]

2.3.5 String

A string literal is a sequence of characters in double quotes.

3

2.3.6 Escape sequence

The following escape sequences are recognized in character and string
literals:
\b backspace
\t horizontal tab
\n linefeed
\r carriage return
\" double quote
\’ single quote
\\ backslash

2.4 Punctions
Punctions group and/or separate the primary expressions consisting of
above-mentioned identifiers and literals.

() can indicates a list of arguments in a function declaration or
function call; it can also be position access operator in built-in facilities
of Array, Map and List; it can also be the boundry symbols of built-in
facilities of Array, Map, List and Tuple.

{} defines statement blocks.
, represents the separator between a list of arguments in functions

or a list of items in built-in data structures.
; is a newline character separating expressions and statements.

2.5 Comments and whitespace
Comments in Scala−− start with /* and terminate with */, where mul-
tiple line comments are not allowed to be nested. Single line comments
take the form of //.

2.6 Operations
Scala−− supports several operations including artithmetic and booleans
literals.

2.6.1 Value binding

A single equsl sign indicates assignment operation or in an assignment
or declaration statement:

=

2.6.2 Operators

The following binary operators are supported in Scala−−:
/, *, %
==, !=, <=, <, >, >=
&, |

The following unary operators are supported:
!, ˜

The following operators can be either bintary or unary, depening the
context:

+, -

4

3 Syntax

3.1 Program structure
Scala−− program consists of decarations which are made of optional
global variable and/or newline-separated and/or optionally semi-colon-
separated function decarations as well as function bodies which may
include variable assignment or nested function bodies.

program:
declaration
program declaration

declaration:
fundec
vardec newline
newline

3.1.1 Variable declarations and type inference

Variables can be declared and initialized globally, or locally in a function
body:

<var|val> <id-list> [: var-type] [= value] [;] <nl>,
where "nl" represents newline.

Type inference Instead of advanced local type inference algorithm
employed in Scala, Scala−− experimented type inference using one type
of complete type inference algorithm – Hindley-Milner type inference
algorithm which has been broadly adopted in a spate of contemporary
type inferred functional programming languages such as Standard ML,
OCaml and Haskell.

A variable can be declaraed as the following:

val myInt : Int = 17
val myFloat : Float = 3.14
val myChar : Char = ’c’
val myString : String = "Hello World!"
val myBoolean : Boolean = true
val myList : List[Int] = List(1,1,2,3,5,8)
val myMap : Map = Map("Static typing" -> "OCaml", "Dynamic

typing" -> "Elixir")

The above expressions are equvivlent to the following:

val myInt = 17
val myFloat = 3.14
val myChar = ’c’
val myString = "Hello World!"
val myBoolean = true
val myList = List(1,1,2,3,5,8)
val myMap = Map("Static typing" -> "OCaml", "Dynamic typing"

-> "Elixir")

Correctness of type inference also hold true when apply to function
declarations regarding formal arguments and function return type which

5

is documented in following sections.

Mutable and immutable variables Immutable variables are de-
fined with keyword val, while mutable variables are defined with key-
word var as the following:

val immutList = List("I" "Can" "NOT" "Be" "Modified" "!")
var mutString = "I am ok to be changed."

3.1.2 Function declarations

Functions are defined in the following way:
def func-id (formal-listopt) [: var-typeopt] block

Here def is a keyword starting a function declaration or definition.
func-id is the identifier of a instance of the function. block contains the
function body. formal-listopt is optionally required when decaring
or defining a function, containing the formal arguments of var-type.
HM type inference algorithm applies here.

formal-list:
formal-type-cluster
formal-list, formal-type-cluster

formal-type-cluster:
var-type
id-list var-type

For instance, a function can be declaraed with explicit specification
of the argument types:

/* Return summation of two integer numbers */
def sumOfSquares(x: Int, y: Int): Int = {

val x2 = x * x
val y2 = y * y
x2 + y2

}

3.2 Expressions
3.2.1 Primary expressions

Primary expressions consist of literals and parathesized expression.

3.2.2 Precedence of operations

3.3 Statements
3.3.1 Assignments

Assignment of variables requires using = keyword. For example:

val anInt = 5
var aChar = ’w’

6

3.3.2 Blocks and control flow

Conditional in Scala−−:

// If statements are like Java except they return a value
like the ternary operator

// Conditional operators: ==, !=, >, <, <=, >=
// Logical operators: &&, ||, !

val age = 18
val canVote = if (age >= 18) "yes" else "no"

// {} is required in the REPL, but not otherwise
if ((age >= 5) && (age <= 6)) {

println("Go to Kindergarten")
} else if ((age > 6) && (age <= 7)) {

println("Go to Grade 1")
} else {

println("Go to Grade " + (age - 5))
}

true || false
!(true)

There are for-loop, while-loop, if-else statement in Scala−−.

/* Scala-- while-loop example: */
var i = 0;
while (i <= 5) {

println(i)
i += 1

}

/* Scala-- do-while-loop example: */
do {

println(i)
i += 1

} while (i <= 9)

/* Scala-- for-loop example: */
for (i <- 1 to 10) {

println(i)
}

// until is often used to loop through strings or arrays
val randLetters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
//for (i <- 0 to (randLetters.length - 1)) {
for (i <- 0 until randLetters.length) {

// Get the letter in the index of the String
println(randLetters(i))

}

// Used to iterate through a list
val aList = List(1,2,3,4,5)
for (i <- aList) {

println("List iitem " + i)
}

7

// Store even numbers in a list
var evenList = for {

i <- 1 to 20
// You can put as many conditions here separated with

semicolons as you need
if (i % 2) == 0
if (i % 3) == 0

} yield i

println("Even list:")
for (i <- evenList)

println(i)

// This loop assigns a value to the 1st variable and it
retains that value until the 2nd finishes its cycle and
then it iterates
for (i <- 1 to 5; j <- 6 to 10) {

println("i: " + i)
println("j: " + j)

}

4 Scoping rules
Scala−− uses lexical scoping just as Scala does. The scope of an variable
or a function is limited to the block where it is declared, if it is not a
global variable or function.

5 Standard library and collections
Several standard library functions and data structures are implemented
in Scala−− to provide feature-rich coding experience.

5.1 println, map and filter
The following code shows an example using map and filter:

// "_" is used to indicate the meant function when
declared in order for subsequent passing function as
an argument

val log10Func = log10 _
println("Log10 is: " + log10Func(1000))
// Apply a function to all items of a list with map
List(1000.0, 10000.0).map(log10Func).foreach(println)

// Filter passes only those values that meet a condition
List(1,2,3,4).filter(_ % 2 == 0).foreach(println)

5.2 Array
Built-in Array has several operations to ease the manipulation, that
includes insert, remove, empty, +=, ++=.

8

// Create and initialize array
val friends = Array("Bob", "Tom")
// Change the value in an array
friends(0) = "Sue"
println("Best friends: " + friends(0))
// Create an ArrayBuffer
val friends2 = ArrayBuffer[String]()
// Add an item to the 1st index
friends2.insert(0, "Phil")
// Add item to the next available slot
friends2 += "Mark"
// Add multiple values to the next available slot
friends2 ++= Array("Susy", "Paul")
// Add items starting at 2nd slot
friends2.insert(1, "Mike", "Sally", "Sam")
// Remove the 2nd element
friends2.remove(1)
// Remove two elements starting at the 2nd index
friends2.remove(1, 2)

5.3 List
List examplifies as the following:

val aList = List(1,2,3,4,5)

6 Code example

6.1 Hello World

/* Hello World Example in Scala-- */
/**
* Author: _________________
* Description: ____________
* Last modified:___________
* Usage: __________________
*/
Object HelloWorld {

// Function entry point starts here:
def main(args: Array[String])
/

pritnln("Hello, world!")
}

}

7 Reference
1. V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core

calculus for scala type checking. Mathematical Foundations of
Computer Science, 1-23, 2006.

9

2. M. Odersky, The Scala Language Spcification, Programming Meth-
ods Laboratory, EPFL, Switzerland, 2014.

3. N. AlDuaij, S. N. Farra, Y. Kang, A. Lottarini, Funk Programming
Language Reference Manual, Course of W4115: Programming
language translators, Columbia University, 2012.

10

	Introdution
	Lexical syntax
	Identifiers
	Keywords
	Statements and blocks
	Functions
	Pattern matching
	Control flow
	Types
	Built-in functions

	Literals
	Integer
	Floating point
	Boolean
	Character
	String
	Escape sequence

	Punctions
	Comments and whitespace
	Operations
	Value binding
	Operators

	Syntax
	Program structure
	Variable declarations and type inference
	Function declarations

	Expressions
	Primary expressions
	Precedence of operations

	Statements
	Assignments
	Blocks and control flow

	Scoping rules
	Standard library and collections
	println, map and filter
	Array
	List

	Code example
	Hello World

	Reference

