
	
	  

LIVA	
A	Lite	Version	of	Java	

	
Shanqi	Lu	 Jiafei	Song	 Zihan	Jiao	 Yanan	Zhang	
sl4017	 js4984	 zj2203	 yz3054	

	
	



	
	
	

1	

 

Table of Contents 

CHAPTER	1	INTRODUCTION	....................................................................................................	3	

CHAPTER	2	LEXICAL	CONVENTIONS	........................................................................................	3	
2.1	White	Space	...............................................................................................................................	3	
2.2	Comments	..................................................................................................................................	4	
2.3	Identifiers	...................................................................................................................................	4	
2.4	Keyword	.....................................................................................................................................	4	
2.5	Literals	.......................................................................................................................................	4	

2.5.1	Boolean	Literals	..........................................................................................................................	4	
2.5.2	Integer	Literals	............................................................................................................................	5	
2.5.3	Floating	Point	Literals	.................................................................................................................	5	
2.5.4	Character	Literals	........................................................................................................................	5	
2.5.5	String	Literals	..............................................................................................................................	5	
2.5.6	Escape	Sequences	for	Character	and	String	Literals	...................................................................	5	
2.5.7	The	Null	Literal	............................................................................................................................	6	

2.6	Separators	..................................................................................................................................	6	
2.7	Operators	...................................................................................................................................	6	

CHAPTER	3	Types	....................................................................................................................	6	
3.1	Primitive	Types	...........................................................................................................................	6	

3.1.1	Integral	Types	.............................................................................................................................	6	
3.1.2	Floating-Point	Types	...................................................................................................................	7	
3.1.3	The	Boolean	Type	.......................................................................................................................	7	

3.2	Reference	Types	.........................................................................................................................	7	
3.2.1	Objects	........................................................................................................................................	7	
3.2.2	The	Class	String	...........................................................................................................................	7	
3.2.3	Arrays	..........................................................................................................................................	8	

CHAPTER	4	Classes	.................................................................................................................	8	
4.1	Class	Declarations	.......................................................................................................................	8	
4.2	Class	Members	...........................................................................................................................	9	
4.3	Field	Declarations	.......................................................................................................................	9	
4.4	Method	Declarations	..................................................................................................................	9	
4.5	Constructor	Declarations	............................................................................................................	9	
4.5	Inheritance	...............................................................................................................................	10	

CHAPTER	5	Statements	..........................................................................................................	10	
5.1	Expression	Statements	.............................................................................................................	10	
5.2	Declaration	Statements	............................................................................................................	11	
5.3	Control	Flow	Statements	..........................................................................................................	11	

5.3.1	If-then	and	If-then-else	.............................................................................................................	11	
5.3.2	Looping:	for	...............................................................................................................................	12	
5.3.3	Looping:	while	...........................................................................................................................	12	



	
	
	

2	

5.4	Method	Creation	and	Method	Call	............................................................................................	13	
5.5	Print	to	Console	........................................................................................................................	14	
5.6	Empty	Statement	......................................................................................................................	15	

CHAPTER	6	Expressions	.........................................................................................................	15	
6.1	Evaluation,	Denotation,	and	Result	...........................................................................................	15	
6.2	Type	of	an	Expression	...............................................................................................................	16	
6.3	Evaluation	Order	......................................................................................................................	16	

6.3.1	Left-Hand	Operand	First	...........................................................................................................	16	
6.3.2	Evaluate	Operands	before	Operation	.......................................................................................	16	
6.3.3	Evaluation	Respects	Parentheses	and	Precedence	..................................................................	16	

6.4	Lexical	Literals	..........................................................................................................................	16	
6.5	The	Arithmetic	Operations	.......................................................................................................	17	
6.6	The	Relational	Operations	........................................................................................................	17	
6.7	The	Bitwise	and	Conditional	Operations:	..................................................................................	18	
6.8	Method	Invocation	Expressions	................................................................................................	18	
6.9	Array	Access	Expressions	..........................................................................................................	18	
6.10	Assignment	.............................................................................................................................	19	

	
	  



	
	
	

3	

CHAPTER 1 INTRODUCTION 
	
	
Liva	is	a	general	purpose	programming	language	and	a	lite	version	of	Java.	It	is	designed	to	let	
programmers	 who	 are	 familiar	 with	 class-based	 languages	 feel	 comfortable	 with	 developing	
common	algorithms	like	GCD.	It	is	lite	in	the	sense	that	it	maintains	some	but	not	all	features	in	
Java.	 It	 has	 the	 similar	 syntax	 and	 abstract	 data	 types	 in	 Java	 and	 supports	 object-oriented	
paradigm	and	inheritance.	However,	generics	and	nested	classes	are	beyond	the	scope	of	this	
project,	hence	they	are	not	to	be	implemented.		
	
The	 Liva	 programming	 language	 is	 strongly	 typed.	 The	 compiler	 checks	 whether	 arguments	
passed	to	a	function	match	expected	types	and	return	an	error	if	not.	It	is	a	portable	language	
and	compiled	down	to	LLVM.	
	
This	language	reference	manual	is	organized	as	follows:	

• Chapter	2	describes	the	lexical	conventions	of	the	Liva	programming	language.	
• Chapter	 3	 describes	 types.	 Types	 are	 divided	 into	 two	 categories:	 primitive	 types	 and	

reference	types.	
• Chapter	4	describes	classes	including	class	declarations	and	inheritance.	
• Chapter	5	describes	statements.	
• Chapter	6	describes	expressions.	

	
	
	
	
	

CHAPTER 2 LEXICAL CONVENTIONS 
	
	
This	chapter	specifies	the	lexical	conventions	of	Liva	programming	language.	A	compiler	takes	a	
program	which	consists	of	a	sequence	of	characters	and	reduce	it	to	a	sequence	of	elements,	
which	 are	 tokens,	white	 space	 and	 comments.	 The	 tokens	 are	 identifiers,	 keywords,	 literals,	
separators,	and	operators.	
	

Element:		
White	Space|	Comment|	Token	

Token:		
Identifier|	Keyword|	Literal|	Separator|	Operator	

	
2.1	White	Space		
	



	
	
	

4	

White	 space	 in	 Liva	 is	 defined	 as	 space	 character,	 tab	 character,	 form	 feed	 character(page-
breaking)	and	line	terminator	character.	White	space	characters	are	ignored	by	a	compiler	except	
as	they	serve	to	separate	tokens.		
	
2.2	Comments	
	
There	is	one	kind	of	comments:	

• /*	text	*/	
All	characters	from	“/*”	to	“*/”	are	ignored.	
	
2.3	Identifiers	
	
An	identifier	is	a	sequence	of	letters,	digits	and	underscore	‘_’.	It	can	only	begin	with	a	letter.	
Identifiers	are	the	names	of	variables,	methods	and	classes.	They	are	case-sensitive.	
	
2.4	Keyword	
	
Keywords	are	reserved	and	cannot	be	used	as	identifiers.		
	

• Keyword:	

	
2.5	Literals	
	
Literals	are	syntactic	representations	of	numeric,	character,	boolean	or	string	data.	They	are	used	
for	representing	values	in	programs.		
	
2.5.1	Boolean	Literals	
	
There	are	two	boolean	literals:	
	

• true represents	a	true	Boolean	value	
• false represents	a	false	Boolean	value	

 

	
for	 new	 if	 boolean	 this	 break	

double	 implements	 else	 import	 return	 extends	
int	 char	 interface	 void	 class	 float	

while	 	 	 	 	 	
	



	
	
	

5	

2.5.2	Integer	Literals	
	
Integer	 numbers	 in	 Liva	 are	 in	 decimal	 format.	 Negative	 decimal	 numbers	 such	 as	 -10 are	
actually	expressions	consisting	of	the	operator	‘-’	and	integer	literal.	The	primitive	type	of	integer	
literal	is	int.	
	
2.5.3	Floating	Point	Literals	
	
Floating	point	numbers	are	expressed	as	decimal	fractions	and	consist	of:	
	

• an	optional	‘+’	or	‘-’	sign;	if	omitted,	the	value	is	positive,	
• one	of	the	following	formats	

	
Format	 Example	

integer	digits	 	 	 9	
integer	digits	 .	 	 7.	
integer	digits	 .	 integer	digits	 17.31	
	 .	 integer	digits	 .56	
	

2.5.4	Character	Literals	
	
Character	literals	are	expressed	as	a	single	quote:	'a', '#', 'π'	
	
2.5.5	String	Literals	
	
String	literals	begin	with	a	double	quote	character	",	followed	by	zero	or	more	characters	and	a	
terminating	double	quote	"	
Within	string	literals,	there	can	be	escape	sequences	but	not	unescaped	newline.	
	
2.5.6	Escape	Sequences	for	Character	and	String	Literals	
	
An	escape	sequence	is	used	to	represent	a	special	character.	It	begins	with	a	backslash	character	
(\),	which	indicates	that	the	following	characters	should	be	treated	specially.	Escape	sequences	
are	listed	in	the	table	below.	
	
Name	 Character	
TAB	 \t	
newline	 \n	
double	quote	 \”	
single	quote	 \’	
backslash	 \\	
	



	
	
	

6	

	
2.5.7	The	Null	Literal	
	
Null	is	a	special	literal	which	represents	a	null	value	which	does	not	refer	to	any	object.	The	null	
literal	is	formed	as:		null	
	
2.6	Separators	
	
Separators	are	tokens	used	for	separating	tokens.		

	
2.7	Operators	
	
The	expression	section	of	this	manual	will	explain	behaviors	of	these	operators.	Here	lists	all	the	
operators.	

	
	
	
	
	

CHAPTER 3 Types 
	
The	Liva	programming	language	supports	two	kinds	of	types:	primitive	types	and	reference	types.	
There	are	also	two	kinds	of	data	values:	primitive	values	and	reference	values	accordingly.	There	
is	also	a	special	null	type.	
	
Primitive	types	are	boolean	types	and	numeric	types.	Reference	types	are	class	types	and	array	
types		
	
3.1	Primitive	Types		
	
Primitive	types	are	redefined	and	their	names	are	reserved	keywords.	
	
3.1.1	Integral	Types	
	

=   >   <   !   ==  >= 
<=  !=  &  |  +   - 
*    \   % 
	

{	 }	 (	 )	 ;	 ,	 .	
	



	
	
	

7	

The	integral	types	are	int	and	char.	
	
The	integer	data	type	is	a	32-bit	sequence	of	digits,	which	has	a	minimum	value	of	-2^31	and	a	
maximum	value	of	 2^31-1.	An	 integer	 literal	 is	 a	 sequence	of	 digits	 preceded	by	 an	optional	
negative	sign.	A	single	zero	cannot	be	preceded	by	a	negative	sign.	

	
The	char	data	type	belongs	to	integral	types	whose	values	are	16-bit	unsigned	integers.	

	
3.1.2	Floating-Point	Types	
	
The	floating-point	data	type	is	a	signed-precision	32-bit	format	values.		

	
3.1.3	The	Boolean	Type	
	
The	boolean	data	 type	 has	 two	possible	 values:	true	and	false.	 A	 boolean	 is	 its	 own	 type	 and	
cannot	be	compared	to	a	non-boolean	variable.	Therefore,	expression	“true	==	1”	would	lead	to	
an	error.	

	
3.2	Reference	Types	
	
There	are	two	kinds	of	reference	types:	class	types	and	array	types.	
	
3.2.1	Objects	
	
An	object	can	be	a	class	instance	or	an	array.	
	
3.2.2	The	Class	String	
	

int x = 10; 
int y = -50; 
int z = 0; 
	

char x = 'a'; 
	

float x = 1.5; 
float y = -5.1; 
float z = 2.0; 

boolean x = true; 
boolean y = false; 
	



	
	
	

8	

An	instance	of	class	String	is	a	sequence	of	characters.	The	class	String	supports	the	following	
built-in	methods:	
	

• charAt(int	index)	
This	method	returns	the	character	located	at	the	String's	specified	index	but	returns	an	error	
if	the	index	is	out	of	range.	Indexes	start	from	zero.	
• length()	
This	method	returns	the	length	of	a	string.	

	

	
3.2.3	Arrays	
	
Arrays	can	be	seen	as	a	special	type.	An	array	object	contains	a	number	of	variables.	All	elements	
in	an	arrays	must	have	the	same	type.	

	
	
	
	
	

CHAPTER 4 Classes 
	
A	class	declaration	defines	a	new	reference	type	and	how	it	is	implemented.	Classes	contain	fields	
and	methods.	 Field	 declarations	 describe	 class	 variables	 while	method	 declarations	 describe	
programs	that	may	be	invoked	by	other	programs	
	
4.1	Class	Declarations	
	
Classes	 are	 defined	 in	 the	 following	 way.	 The	 optional	 extends	 clause	 in	 a	 class	 declaration	
specifies	the	superclass	of	the	current	class.	
	
	
	
	

class	MyClass	extends	SuperClass{	
//field,	constructor	
//	method	declarations	

}	

String w = "Liva"; 
String x = new String("Liva"); 
int y = x.length(); 
char z = x.charAt(1); 
	

int[] ai;    
char ac[] = { 'a', 'b', 'c', ' ' }; 
	



	
	
	

9	

	
	
	
4.2	Class	Members	
	
Members	of	a	class	consist	of:	

• Members	inherited	from	its	superclass	
• Members	declared	in	the	class	declaration	

	
4.3	Field	Declarations	
	
Field	Declarations	specify	variables	of	a	class	type.	
	
4.4	Method	Declarations	
	
Method	declarations	specify	executable	code	that	might	be	invoked.	
	

	
4.5	Constructor	Declarations	
	
If	the	constructor	is	not	defined,	the	compiler	generates	a	default	one.	

/* Field declarations and method declarations */ 
class Calculation{ 
    int z; 
 
    void addition(int x, int y){ 
        z = x+y; 
    } 
 
    void Subtraction(int x,int y){ 
        z = x-y; 
    } 
} 
	



	
	
	

10	

	

	
4.5	Inheritance	
	
Inheritance	is	that	a	subclass	acquires	all	the	behaviors	and	properties	of	a	super	class.	
	

	
	
	
	
	

CHAPTER 5 Statements 
	
 
Statements	 include:	 if,	 else,	 for,	 break,	 continue,	 return,	 as	 well	 all	 expressions	 which	 are	
explained	in	the	following.	Except	as	indicated,	statements	are	executed	in	sequence	
	
5.1	Expression	Statements	
	
An	expression	statement	consists	of	an	expression	followed	by	a	semicolon.	
 

 

/* User defined constructor*/ 
class Calculation{ 
    int z; 
    constructor (int z){ 
        this.z = z; 
    } 
    void addition(int x, int y){ 
        z = x+y; 
    } 
 
    void Subtraction(int x,int y){ 
        z = x-y; 
    } 
} 
	

expression; 

class My_Calculation extends Calculation { 
 
    void multiplication(int x, int y) { 
        z = x * y; 
    } 
} 



	
	
	

11	

Usually	expression	statements	are	assignments	or	function	calls.	

 
5.2	Declaration	Statements	
 
A	declaration	statement	declares	a	variable	by	specifying	its	data	type	and	name.	It	also	could	
initialize	the	variable	during	the	declaring.	
	

	
5.3	Control	Flow	Statements	
 
5.3.1	If-then	and	If-then-else	
	
There	are	two	forms	of	conditional	statements.	
	
For	 the	 first	 case,	 the	 conditional	 expression	 that	 is	 evaluated	 is	 enclosed	 in	 balanced	
parentheses.	 The	 section	of	 code	 that	 is	 conditionally	 executed	 is	 specified	 as	 a	 sequence	of	
statements	enclosed	in	balanced	braces.	If	the	conditional	expression	evaluates	to	false,	control	
jumps	to	the	end	of	the	if-then	statement.	

 
	

/* declare a variable with data type and name */ 
char a; 
int b =10; 
float c; 
 
int array1[] = { 2, 5, -2, 6, -3, 8, 0, -7, -9, 4 }; 
String name= "class"; 
 
boolean isMatch = false; 
	

/* Object creation expressions */ 
Student e1 = new Student (); 
 
/* Object creation expressions */ 
c = 8933.234; 

if (expression) { 
statement 

} 



	
	
	

12	

In	the	second	case	the	second	sub-statement	is	executed	if	the	expression	is	false.	As	usual	the	
‘else’	ambiguity	is	resolved	by	connecting	an	else	with	the	last	encountered	elseless	if.	

 
 
5.3.2	Looping:	for	
 
The	‘for’	condition	will	also	run	in	a	loop	so	long	as	the	condition	specified	in	the	‘for’	statement	
is	true.	The	‘for’	statement	has	the	following	format:	

	
The	first	expression	specifies	initialization	for	the	loop	and	it	is	executed	once	at	the	beginning	of	
the	'for'	statement;	the	second	specifies	a	test,	made	before	each	iteration,	such	that	the	loop	is	
terminated	 when	 the	 expression	 becomes	 false;	 the	 third	 expression	 typically	 specifies	 an	
increment	or	decrease	which	is	performed	after	each	iteration.	
	
The	following	example	uses	a	‘for’	statement	to	print	the	numbers	from	0	to	10:	

	
 
5.3.3	Looping:	while	
	
The	‘while’	statement	has	the	form:	
 

 
The	‘while’	statement	will	be	executed	in	a	loop	as	long	as	the	specified	condition	in	the	while	
statement	is	true.	The	expression	must	have	type	boolean,	or	a	compile-time	error	occurs.	

if (expression) { 
statement1 

} else { 
Statement2 

} 

for (expression1; expression2; expression 3) { 
statement 

 } 

for (int num=0; num < 11; num ++) { 
 
    print(num); 
 
} 
 

while(expression) { 
statement 

} 



	
	
	

13	

	
• If	the	value	for	expression	is	true,	then	the	contained	statement	is	executed	

• If	execution	of	the	statement	completes	normally,	then	the	entire	‘while’	statement	
is	executed	again,	beginning	by	re-evaluating	the	expression.		

• If	the	value	of	the	expression	is	false,	no	further	action	is	taken	and	the	‘while’	statement	
completes	normally. 
 

5.3.4	Branching:	break,	continue,	and	return	
 
The	break	statement	causes	termination	of	the	smallest	enclosing	for	statement;	control	passes	
to	the	statement	following	the	terminated	statement.	The	expression	for	 ‘break’	statement	 is	
shown	below:	
 

	
The	continue	statement	causes	control	to	pass	to	the	loop-continuation	portion	of	the	smallest	
enclosing	for	statement;	that	is	to	the	end	of	the	loop.	The	expression	for	‘continue’	statement	
is	show	below:	
 

 
A	function	returns	to	its	caller	by	means	of	the	‘return’	statement,	which	has	one	of	the	forms:	

	
In	the	first	case	no	value	is	returned	when	a	method	is	declared	void.	For	the	first	case,	the	users	
could	specify	no	return	statement	for	simplification.	In	the	second	case,	simply	put	the	value	(or	
an	 expression	 that	 calculates	 the	 value)	 after	 the	 return	 Keyword,	 then	 the	 value	 of	 the	
expression	is	returned	to	the	caller	of	the	function.		
 
5.4	Method	Creation	and	Method	Call	
 
The	user	could	write	the	user-defined	methods.	
	

	

break; 

continue; 

return; 
return(expression); 

returnType nameOfMethod (Parameter List) { 
 // method body 
} 



	
	
	

14	

• returnType: Method	may	return	a	value.  
• nameOfMethod: This	is	the	method	name.	The	method	signature	consists	of	the	method	

name	and	the	parameter	list. 
• Parameter List: The	 list	 of	 parameters,	 it	 is	 the	 type,	 order,	 and	 number	 of	

parameters	of	a	method.	These	are	optional,	method	may	contain	zero	parameters. 
• method body: The	method	body	defines	what	the	method	does	with	statements. 

	
For	using	a	method,	 it	 should	be	 called.	 There	are	 two	ways	 in	which	a	method	 is	 called	 i.e.	
method	returns	a	value	or	returning	nothing	(no	return	value).	
	
Following	 is	 the	 example	 to	 demonstrate	 how	 to	 define	 a	method	 and	 how	 to	 call	 it	with	 a	
returned	value:	

    

 
5.5	Print	to	Console	
 
The	print()	function	takes	one	or	more	parameters	and	prints	them	one	by	one	to	standard	output.	
The	parameter	type	may	be	string,	number,	or	object.	It	is	in	the	following	form:		
 

	
Here	is	an	example	to	accept	an	int	and	print	the	int	to	the	console.	

 
Another	example	to	accept	a	string	and	print	the	string	to	the	console:	

void main(String[] args) { 
    int a = 11; 
    int b = 6; 
    int c = minFunction(a, b); 
    prin("Minimum Value = " + c); 
} 
 
int minFunction(int n1, int n2) { 
    int min; 
    if (n1 > n2) 
        min = n2; 
    else 
        min = n1; 
    return min; 
} 

print (parameters); 

print (1); 

print (“CS4115 is fun!”) 



	
	
	

15	

 

5.6	Empty	Statement	
 
An	empty	statement	does	nothing	and	has	the	following	form:	

	
	
	
	

CHAPTER 6 Expressions 
	
	
Much	 of	 the	 work	 in	 a	 program	 is	 done	 by	 evaluating	expressions,	 such	 as	 assignments	 to	
variables,	or	for	their	values,	which	can	be	used	as	arguments	or	operands	in	larger	expressions,	
or	to	affect	the	execution	sequence	in	statements,	or	both.	

This	chapter	specifies	the	meanings	of	expressions	and	the	rules	for	their	evaluation.	

	

6.1	Evaluation,	Denotation,	and	Result	
	
Liva	evaluates	a	larger	expression	by	evaluating	smaller	parts	of	it.	So	the	result	of	an	expression	
is	important.	When	an	expression	in	a	program	is	evaluated	(executed),	the	result	denotes	one	
of	three	things:	

• A	variable	

• A	value		

• Nothing	(for	void	functions	and	methods)	

	

An	expression	denotes	nothing	if	and	only	if	it	is	a	method	invocation	that	invokes	a	method	that	
does	not	return	a	value,	that	is,	a	method	declared	void.	Such	an	expression	can	be	used	only	as	
an	 expression	 statement	 (in	 statement	 chapter),	 because	 every	 other	 context	 in	 which	 an	
expression	can	appear	requires	the	expression	to	denote	something.		

If	an	expression	denotes	a	variable,	and	a	value	is	required	for	use	in	further	evaluation,	then	the	
value	of	that	variable	is	used.	In	this	context,	if	the	expression	denotes	a	variable	or	a	value,	we	
may	speak	simply	of	the	value	of	the	expression.	In	this	way,	we	may	say	each	expression	denotes	
a	value	in	a	certain	type.	

	

;	



	
	
	

16	

6.2	Type	of	an	Expression	
	
For	an	expression	that	denotes	to	a	variable,	the	value	stored	in	a	variable	is	always	compatible	
with	the	type	of	the	variable.	In	other	words,	the	value	of	an	expression	whose	type	is	T	is	always	
suitable	for	assignment	to	a	variable	of	type	T.		

The	 rules	 for	 determining	 the	 type	 of	 an	 expression	 that	 denotes	 to	 a	 value	 are	 explained	
separately	below	for	each	kind	of	expression.	Including	arithmetic	operations,	relation	operations,	
bitwise/conditional	operations,	assignment.	

	

6.3	Evaluation	Order	
	

Liva	guarantees	that	the	operands	of	operators	appear	to	be	evaluated	in	a	specific	evaluation	
order,	namely,	from	left	to	right.	

	

6.3.1	Left-Hand	Operand	First	
	

The	left-hand	operand	of	a	binary	operator	appears	to	be	fully	evaluated	before	any	part	of	the	
right-hand	operand	is	evaluated.	

	

6.3.2	Evaluate	Operands	before	Operation	
	

Liva	 guarantees	 that	 every	 operand	 of	 an	 operator	 (except	 the	 conditional	 operators	&,	|)	
appears	to	be	fully	evaluated	before	any	part	of	the	operation	itself	is	performed.	

For	example,	in	an	assignment	expression,	the	assignment	will	not	be	evaluated	until	the	right	
hand	operands	(if	it	is	another	expression)	is	evaluated.	

	

6.3.3	Evaluation	Respects	Parentheses	and	Precedence	
	

Liva	 respects	 the	 order	 of	 evaluation	 indicated	 explicitly	 by	 parentheses	 and	 implicitly	 by	
operator	precedence.	

	

6.4	Lexical	Literals	
	

A	literal	denotes	a	fixed,	unchanging	value.	This	kind	of	expression	could	be	evaluated	without	
being	broken	into	small	expressions.	

The	type	of	a	literal	is	determined	as	follows:	



	
	
	

17	

• The	type	of	an	integer	literal	is	int.			

• The	type	of	a	floating-point	is	float.		

• The	type	of	a	boolean	literal	is	boolean.	

• The	type	of	a	character	literal	is	char.	

• The	type	of	a	string	literal	is	String.	

• The	type	of	the	null	literal	null	is	the	null	type;	its	value	is	the	null	reference.	

Evaluation	of	a	lexical	literal	always	completes	normally.	

	

6.5	The	Arithmetic	Operations	
	
The	value	of	an	equality	expression	 is	numeric	(int	or	double,	depends	on	the	operands).	The	
operators	+,	-,	*,	/,	and	%	are	called	the	arithmetic	operators.	They	have	the	same	precedence	
and	 are	 syntactically	 left-associative	 (they	 group	 left-to-right).	 The	 type	 of	 the	 arithmetic	
expression	is	the	promoted	type	of	its	operands.	

The	type	of	each	of	the	operands	of	arithmetic	operators	must	be	a	type	that	is	convertible	to	a	
primitive	numeric	type,	or	a	compile-time	error	occurs.	For	example:	“+”	two	objects	of	a	user-
defined	class	is	prohibited.		

	

+	 Adds values on either side of the operator 

-	 Subtracts right hand operand from left hand operand 

*	 Multiplies values on either side of the operator 

/	 Divides left hand operand by right hand operand 

%	 Divides left hand operand by right hand operand and returns remainder 

	

		

6.6	The	Relational	Operations	
	
The	value	of	an	equality	expression	is	always	boolean.	The	equality	operators	may	be	used	to	
compare	two	operands	that	are	convertible	to	numeric	int	type,	or	two	operands	of	type	boolean.	
All	other	cases	result	in	a	compile-time	error.		

==	 ( Addition) Adds values on either side of the operator 

!=	 Checks if the values of two operands are equal or not, if values are not equal then 
condition becomes true. 



	
	
	

18	

	

	

	

6.7	The	Bitwise	and	Conditional	Operations:	
	
Unlike	Java,	Liva	uses	&,	|,	^,	~	for	both	bitwise	and	conditional	operations.	That	depends	on	the	
operands.	The	operands	of	a	Bitwise/Conditional	Operation	should	both	be	int	or	boolean.	

	

&	 Binary AND if both operands are int type / Logic AND if both operands are boolean type 

|	 Binary OR if both operands are int type / Logic OR if both operands are boolean type 

^	 Binary XOR if both operands are int type / Logic XOR if both operands are boolean type 

~	 Binary Complement if both operands are int type / Logic INVERT if both operands are 
boolean type 

	

	

6.8	Method	Invocation	Expressions	
	
A	method/function	 invocation	 expression	 is	 used	 to	 invoke	 an	 instance	method	 (declared	 in	
previous	chapters).	The	result	type	of	the	chosen	method	is	determined	as	follows:	If	the	chosen	
method/function	is	declared	with	a	return	type	of	void,	then	the	result	is	void.	Otherwise,	the	
result	type	is	the	method/function's	declared	return	type.	

	

6.9	Array	Access	Expressions	
	
An	array	access	expression	contains	two	subexpressions,	the	array	reference	expression	(before	
the	left	bracket)	and	the	index	expression	(within	the	brackets).	

Note	that	the	array	reference	expression	may	be	a	name	or	any	primary	expression	that	is	not	an	

>	 Checks if the value of left operand is greater than the value of right operand, if yes 
then condition becomes true. 

<	 Checks if the value of left operand is less than the value of right operand, if yes then 
condition becomes true. 

>=	 Checks if the value of left operand is greater than or equal to (no less than) the 
value of right operand, if yes then condition becomes true. 

<=	 Checks if the value of left operand is less than or equal to (no greater than) the 
value of right operand, if yes then condition becomes true. 



	
	
	

19	

array	creation	expression.	The	type	of	the	array	reference	expression	must	be	an	array	type.	For	
the	index	expression,	the	promoted	type	must	be	int,	or	a	compile-time	error	occurs.	

The	result	of	an	array	access	expression	is	a	variable	of	type	T,	namely	the	variable	within	the	
array	selected	by	the	value	of	the	index	expression.		

	

6.10	Assignment	
	
In	Liva,	the	only	assignment	operator	is	“=”.	

The	result	of	the	first	operand	of	an	assignment	operator	must	be	a	variable.	This	operand	may	
be	a	named	variable,	such	as	a	local	variable	or	a	field	of	the	current	object	or	class,	or	it	may	be	
a	computed	variable,	as	can	result	from	a	field	access	or	an	array	access	(defined	previously).	


