
GAL Reference Manual

Anton: ain2108, Donovan: dc3095, Macrina: mml2204, Andrew: af2849

July 21, 2016

1 Introduction

Graph Application Language or GAL is designed to make definitions, operations
and manipulations on graphs easier. A lot of real world problems can be modeled
by graphs and complex graph algorithms can be applied to solve them. Although
graph algorithms are easily coded in several programming languages, a language
with special data structures, syntax and semantics to allow the user to easily
interact with graphs and their algorithms is desirable.
The syntax of GAL is similar to C. It has some special syntactic and syntax
elements to deal more easily with graph applications. The compiler will be
implemented in OCAML. It will compile to LLVM.

2 Lexical Conventions

Six type of tokens exist in GAL: identifiers, keywords, constants, strings, ex-
pression operators and other forms of separators. Common keystrokes such as
blanks, tabs, newlines and comments are ignored and used to separate tokens.
At least one of these common keystrokes are required to separate adjacent to-
kens.

2.1 Comments

The characters /*introduce a comment which terminates with the characters
*/. There are no single line comments (such as // in C).

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be
alphabetic. The underscore counts as alphabetic. Upper and lower case letters
are considered different. The maximum number of characters in an identifier is
seven.

2.3 Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

1. int

1

2. list

3. string

4. break

5. continue

6. if

7. else

8. for

9. return

10. def

11. node

12. edge

2.4 String

A string is a sequence of ASCII characters surrounded by double quotes i.e. one
set of double quotes ” begins the string and another set ” ends the string. For
example, ”GAL” represents a string. Individual characters of the string cannot
be accessed. There are no escape characters within strings. All ASCII characters
between the quotes are stored in the string with a \n string terminator character
appended automatically to the end.

2.5 Constants

There are several kinds of constants, as follows:

2.5.1 Integer Constants

It is a sequence of digits. It is taken to be in decimal.

2.5.2 String Constants

It is a constant of the string type defined above.

3 More About Identifiers

The storage associated with all identifiers is local to the function the identi-
fier is defined in. There are no global variables.The meaning of the value(s)
stored in the identifier is determined by its type. The fundamental types of ob-
jects in GAL are integers and strings. GAL defines several derived data types
namely list, node, edge and function.The fundamental as well as derived types
are referred to as ’type’ in the rest of this manual.

2

1. List: They comprise several objects of other types such as integers, strings,
edges, nodes or even other lists. However, a list cannot contain functions.
All objects in a list must be of the same type. For example, a list can
contain all edges or all lists.

2. Node: It encodes all the information present in a graph vertex i.e. it
contains the string names of the vertex, the set of all vertices reachable
from the vertex it defines as well as the weights of corresponding outgoing
edges from it. It contains string and integer datatypes. The vertices
connected to it are represented by strings with their corresponding weights
as integers. Floating point weights are not accepted.

3. Edge: It contains three elements namely two strings corresponding to the
two vertices the edge connects and an integer representing its weight.

4. Function: It takes one or more input objects of node, edge, list, integer or
string type and returns a single object of a given type, namely, node, edge,
list or integer. Functions cannot take as input or return other functions.
If a function is required to return multiple objects, we can combine them
into one of our derived data types which the function is allowed to return.

Methods of constructing objects can be applied recursively. For example, we
can have a list containing lists of lists.

4 Conversions

Operands cannot be converted automatically from one type to another by any
operators.

5 Expressions denoted by expression

The two major considerations are precedence and associativity of expression op-
erators. In the description of the expressions below, the subsections are ordered
in decreasing level of precedence. The expressions in the same subsection have
the same level of precedence. The operators which can act on the expressions
in each subsection and their associativity has been described.

5.1 Primary Expressions denoted by primary

These include identifiers, strings, constants, nodes, edges, parenthesized expres-
sions of any type, function calls and subscripts. Primary expression involving
subscripts and function function calls are left associative.

5.1.1 Identifiers denoted by identifier

It is the name given to any integer, string, list, node, edge or function according
to the naming convention described earlier.

5.1.2 Constant denoted by constant

These include integer denoted by intConst and string denoted by strConst con-
stants.

3

5.1.3 Node denoted by node

A node is a primary expression of the form

|string : (integer, string)(integer, string)(integer, string).....(integer, string)|
(1)

The string and integer maybe constants and/or identifiers of string and inte-
ger types respectively.The first string denotes the vertex represented by the
node and the (integer, string) pairs denote the weights and vertex names of
the vertices connected to it by edges in the graph. An expression evaluating
to an integer is not permitted in place of integer in equation (1). The order in
which the (integer,string) pairs are arranged is random. The pairs need not be
unique. For example, we can have 2 edges from node A to node B both having
the same weight.However, every outgoing edge from a graph vertex has exactly
one (integer,string) pair associated with it.

5.1.4 Edge denoted by edge

An edge is a primary expression of the form

|string, integer, string| (2)

The string and integer maybe constants and/or identifiers of string and integer
types respectively. The first string denotes the source vertex followed by the
integer weight and the destination vertex representing an edge in the graph.
An expression evaluating to an integer is not permitted in place of integer in
equation (2).

Thus when our language encounters a |, it checks for the subsequent pattern
and accordingly decides if an edge or node is being defined.

5.1.5 Parenthesized expressions

Any expression in GAL can be parenthesized. The format is

(expression) (3)

. Parenthesis cannot be inserted or removed from within the node or edge
definitions.

The type and value of the expression remains same - only the parenthesized
expression of primary expression type.

5.1.6 Subscripts

The form is
identifier[constant] (4)

The identifier must be of type list and the constant must be an integer greater
than or equal to 0. Subscript expressions output the constantth element of
the list. Lists are indexed from 0. In order for the expression to be valid, the
identifier must have been previously defined having length at least one greater
than the value of the constant.

4

5.1.7 Function calls

Functions previously defined may be called. GAL matches the return type
(according to the expression the function is present in), the function name (rep-
resented by an identifier), the number of inputs and the input types with the
previously defined function. Identifiers used in function names may not be used
in other function names or as variable names except in the following case : An
identifier may be used as a variable name local to a function other than the call-
ing function and the function being called. The form of a primary-expression
indicating a function call is

identifier(optionalexpressionlist) (5)

The optionalexpressionlist denotes a comma separated set of inputs to the func-
tion and may be absent if the function is defined as containing no inputs. Any
expression is acceptable as long as it evaluates to the required type as mentioned
in the function definition. Thus nested function calls can exist. All inputs of the
functions must be explicitly listed in the function call and none of the inputs
can take on inferred values. Thus an identifier followed by open parenthesis
matching the requirements above is a function. If it is previously undefined or
does not meet the above requirements an error is returned. If it is not declared
at any point in the program, a compile time error occurs at the point where the
function is called. If the defined function has no input arguments, the called
function must also not have any. All function parameters are passed by value
i.e. changes to the input parameters within the function will not be reflected in
the calling function unless the parameter is returned. GAL passes arguments
by value.

5.2 Unary Operators

Our language has two unary operators - unary minus and logical negation. They
are right associative.

5.2.1 Unary minus

The form is
−integer (6)

The integer may be a constant or an identifier of integer type.

5.2.2 Logical negation

This expression is of the form
!integer (7)

The integer may be an identifier or a constant of integer type. Its ouput is the
integer 1 if the input integer is 0 and is 0 for any non-zero integer. GAL does
not have the boolean variable type. 1 and 0 are represented as integers.

5.3 Multiplicative Binary Operators

The operators of this type are * and / They are left associative.

5

5.3.1 Binary Multiplication

This is of the form
expression ∗ expression (8)

Both the expressions in the above must evaluate to an integer type.

5.3.2 Binary Division

This is of the form
expression/expression (9)

Both the expressions in the above must evaluate to an integer type. GAL
does not have or require floating point numbers since its primary application is
graphs. Hence binary division outputs the integer quotient of the two operands.

5.4 Additive Binary Operators

The operators of this type are + and - and are left associative.

5.4.1 Binary Addition

This is of the form
expression + expression (10)

Both the expressions must evaluate to integers.

5.4.2 Binary Subtraction

This is of the form
expression− expression (11)

Both the expressions must evaluate to integers.

5.5 Binary Graph Operators

The operators of this type are +. and -. They are left associative. Graphs
are defined as a list of edges in GAL using the standard library function define
Graph which takes a list of edges or list of nodes as input.

5.5.1 Graph Edge Addition

The expression is of the form

expression + . expression (12)

Here both expressions must evaluate to a single edge, a list of edges or a single
edge on one side and a list of edges on the other.

5.5.2 Graph Edge Subtraction

The expression is of the form

expression− . expression (13)

Here both expressions must evaluate to a single edge, a list of edges or a single
edge on one side and a list of edges on the other.

6

5.5.3 Graph Node Addition

The expression is of the form

expressionA + . expressionB (14)

Here expressionA must evaluate to a list of edges (which is a graph in GAL)
and expressionB must evaluate to a single node.

5.5.4 Graph Node Subtraction

The expression is of the form

expressionA− . expressionB (15)

Here expressionA must evaluate to a list of edges (which is a graph in GAL)
and expressionB must evaluate to a single node.

When graph node addition or subtraction is encountered, all the edges as-
sociated with that node are removed from the graph denoted by expressionA.

5.6 Binary Relational Operators

These are left associative. Each expression of this type evaluates to integer 1 if
true and integer 0 is false. The expressions on both sides of the operator must
evaluate to integers. The operators are of the following types:

5.6.1 Less than

Expressions of the form

expression < expression (16)

5.6.2 Greater than

Expressions of the form

expression > expression (17)

5.6.3 Less than equal to

Expressions of the form

expression <= expression (18)

5.6.4 Greater than equal to

Expressions of the form

expression >= expression (19)

5.7 Equality Operator

These are left associative. Each expression of this type evaluates to integer 1 if
true and integer 0 is false. The expressions on both sides of the operator must
evaluate to integers. Its form is

expression == expression (20)

7

5.8 Graph Equality Operator

This is left associative. Each expression of this type evaluates to integer 1 if
true and integer 0 is false. Its form is

expression == . expression (21)

Here both expressions must evaluate to a single edge, a list of edges or a single
edge on one side and a list of edges on the other. In the later case the result
of the expression is clearly 0. Alternatively, both expressions may evaluate to
nodes.

5.9 AND Operator

It is of the form
expression&&expression (22)

It is valid only if the left and right side expressions both evaluate to integers.
First the left hand expression is evaluated. If it returns, a non-zero integer,
then the right side is evaluated. If that too returns a non-zero integer the AND
operator expression evaluates to integer 1. If the left side expression evaluates
to integer 0, the right side expression is not evaluated and the AND operator
expression evaluates to 0.

5.10 OR Operator

It is of the form
expression||expression (23)

It is valid only if the left and right side expressions both evaluate to integers.
First the left hand expression is evaluated. If it returns, a zero integer, then
the right side is evaluated. If that returns a non-zero integer the OR operator
expression evaluates to 1 but if it returns a 0 integer, the OR operator expression
evaluates to integer 0. If the left side expression evaluates to integer 1, the right
side expression is not evaluated and the OR operator expression evaluates to 1.

5.11 Assignment Operator

This is right associative and is of the form

expressionA = expressionB (24)

expressionA must an identifier, a subscript expression, a parenthesized identifier
or a parenthesized subscript expression. expressionB may be an expression of
any type. expressionA must have been declared to have the same type as the
value generated by expressionB. If expressionA is a subscript or parenthesized
subscript expression, the Assignment Operator expression is valid only if the
list in expressionA has all the elements of the same type as expressionB.

6 Declarations

There are two types of declarations

8

6.1 Function Declaration

All functions must be declared at the start of the program. A function cannot
be declared within another function. A function cannot be defined or called
unless it is declared. A function declaration has the following form

def type−s p e c i f i e r i d e n t i f i e r (type1 input1 , type2 input2 , typen inputn) ;

The above is a statement. The significance of ’;’ will be discussed later. The
typek inputk for k = 1 to n denotes the kth input to the function. A function
may also have no inputs. typek is one of our types described earlier while input is
an identifier of that type. The identifier(name) used in the function declaration,
function definition and function call (function call can contain a more complex
expression as well) may be different as long as the type is same.type-specifier
denotes the return type of the function. A function must have exactly one
definition and exactly one declaration. The uniqueness requirements of the
identifier have been described in Section 6.1.8.

6.2 Variable Declaration

All variables used in a function must be declared at the start of the function.
They may be (re)defined at any point within the function in which they are
declared. The value of the variable at any point is the most recent one as
defined within the function irrespective of the program block structure. The
scope of the variable is limited to the function in which it is declared. Variables
cannot be declared or defined outside functions. variables can be of type integer,
string, list, node or edge. The type of every identifier within a function does not
change throughout the function. No two identifiers within the same function
can have the same name. Storage space is allotted to all variables at the time of
declaration. If the contents of any declared variable are printed before definition,
a random value is printed.

1. Variables of type integer, string, node and edge and declared as follows:

de f dec lared−type i d e n t i f i e r ;

declared-type assigns a type from among integer, string, node or edge to
the identifier. For these types, space is not allocated at the time of the
declaration but only at the time of definition.

2. Variables of the list type must be provided with a length at the time of
declaration. This is done as follows:

de f l i s t (i d e n t i f i e r , type , i n t e g e r) ;

The identifier is declared to be of type list and space is allotted to it
according to the integer constant or identifier (third term in the bracket)
mentioned. The length of the list must be provided at the time of the
declaration. Every element of the list must be of the type according to
the second term in the bracket.

7 Definitions

These are of two types:

9

7.1 Function Definition

This takes the following form:

type−s p e c i f i e r i d e n t i f i e r (type1 input1 , type2 input2 . . . typen inputn){
/∗ f i r s t d e f i n e (and o p t i o n a l l y d e c l a r e) the v a r i a b l e s ∗/

/∗ s e t o f s imple and compound statements ∗/

/∗ re turn (r e t u rn v a l u e) ;∗/
}

The first line is identical to the function definition except for the def keyword.
The return statement can occur anywhere within the function provided it is the
last statement within the function according to the control flow. Statements
occurring after return in the control flow will cause errors. A function that
is declared and called but not defined will produce a compile-time error. Any
function can be defined anywhere in the program provided it is declared at the
beginning.

7.2 Variable Definition

A variable definition is simply an assignment. Note that if a definition is an
assignment of the form in (24) and if expressionA is a subscript or parenthesized
subscript where the other elements of the list have not been defined but the list
has been declared, the other elements of the list still contain random (garbage)
values.

1. integer, string, node and edge definitions consist of

i d e n t i f i e r = expr e s s i on ;

The left hand side identifier must be of the same type that the right hand
side expression evaluates to.

2. list definition A single element of a list may be defined as follows:

subsc r ip t−exp r e s s i on = expr e s s i on ;

with matching types. However, an entire list is defined as follows:

l i s t − i d e n t i f i e r = [element1 ; element2 ; elementn] ;

All the elements must be of the same type according to the type of the
identifier on the left side as specified in the list declaration.

Variable declaration and definition must be done in separate statements.

8 Statements denoted by statement

Execution of statements are carried out in order unless specified otherwise.
There are several types of statements:

10

8.1 Expression Statement

Most statements are expression statements which have the form

expression; (25)

Usually expression statements are assignment or function calls.

8.2 Compound statement

Several statements statement of any statement type may be enclosed in a block
beginning and ending with parentheses as follows:

{ statment− l i s t } ;

The entire block (along with the parentheses) is called a compound statement.
Statment-list can comprise a single statement (including the null statement) or
a set of statements of any statement type. Thus compound statements may be
nested.

8.3 Conditional Statement

The form is:

i f (exp r e s s i on)
compound statement
e l s e
compound statement

This entire form is called a conditional statement. Every if must be followed by
an expression and then a compound statement. This in turn must be followed
by an else which must be followed by a compound statement (even if it is the
null statement). Thus there is no else ambiguity. The expression must evaluate
to an integer. If it evaluates to 1, the compound statement immediately after if
is evaluated and the block following else is not executed and the flow proceeds to
the next statement(following the conditional statement). If the expression fol-
lowing it evaluates to 0, the else block is executed. Thus conditional statements
may be nested.

8.4 For Loop Statement

The statement has the form

f o r (expr e s s i on1 ; expr e s s i on2 ; expre s s i on3)
compound statement

None of the expression statements can be omitted. Identical to C, the first
expression specifies the initialization of the loop, the second specifies a test
made before each iteration such that the loop is exited when the expression
becomes the integer 0; the third expression specifies an incrementation which is
performed after each iteration.

11

8.5 Break Statement

The format is

break ;

It causes termination of the smallest enclosing for loop. Control passes to the
statement just outside this terminated for loop.

8.6 Continue Statement

The format is

cont inue ;

It causes the control to pass to the next iteration of the smallest enclosing for
loop. The for loop counter variable is incremented just as it would be if the
control had reached the end of the for loop.

8.7 Return Statement

The return statement is a function return to the caller. Every function must
have a return type. This return value may or may not be collected by the calling
function depending on the statement containing the function call. The format
is:

r e turn (exp r e s s i on) ;

; In the above, expression must evaluate to the same type as that in the function
definition it is present in.

8.8 Null Statement

This has the form

;

9 File Inclusion

Other GAL files containing user defined function declarations or definitions and
standard library functions used in the current program must be included at the
start of the program. The syntax for this is

inc lude ” f i l ename ”

The filename must contain the path to the file. filename must be a string
constant. If the file is not found an error is returned.

10 Built-In Functions

GAL has six built in functions:

12

10.1 Opening a File denoted by fopen

The format is:

s p e c i a l i d e n t i f i e r = fopen (f i l ename) ;

This is a statement. Since printing to files is not allowed, fopen always opens
the file in read mode. It returns a special identifier. The rules for naming it are
the same as the previously defined identifier. However, its type is a pointer to
the file filename. filename must contain a constant or identifier of type string.
No operations can be performed on this special identifier and it is only used
in two places - as an output of the fopen function and as an input to the scan
function.

10.2 Printing denoted by print

The format is:

p r i n t (i d e n t i f i e r 1 , i d e n t i f i e r 2 i d e n t i f i e r n)

This is a statement. identifier 1 to identifier n are the comma separated list
of identifiers of any type which we want to print. n can take any value from 1
to a maximum of 10. Thus only upto 10 different strings can be printed with
a single print statment. Each identifier is internally converted to a string type
for printing. The print function automatically prints a single space between the
value of every identifier. Every print statement automatically prints a newline
on completion to the standard output.

10.3 Scanning denoted by scan

The format is

scan (s p e c i a l i d e n t i f i e r , type , d e l i m i t e r) ;

This is a statement comprising a built-in function call. If the special identifier
does not exist an error is returned. The return type of scan is the same as the
input type and must be captured by an identifier of the same type. Delimiter
may be a space denoted by ’ ’ or a newline denoted by ’\n’. Thus every scan
statement must be preceeded by an fopen statement.

Printing and scanning are both I/O functions.

10.4 Length denoted by len

This computes the length of a list. Its format is

i d e n t i f i e r A = len (i d e n t i f i e r B)

Here, identifierA is of type integer returns the length of the list. For a non-
zero value of identifierA, the maximum allowable list index (for the subscript
expression) is clearly length - 1. identifierB is of type list.

13

10.5 Finding source vertex denoted by src

This computes the source vertex in an edge. Its format is

s t r i n g = s r c (edge) ;

where string is an identifier of type string and edge is an identifier or expression
of type edge.

10.6 Finding destination vertex denoted by dest

This computes the destination vertex in an edge. Its format is

s t r i n g = dest (edge) ;

where string is an identifier of type string and edge is an identifier or expression
of type edge.

No identifier can have the names print, scan, openfile, len, src or dest.

11 Standard Library Functions

The standard library functions included in GAL are pop and append on lists,
and create graph node on a list of nodes.

1. Pop: input is a list and output is a new list and an element of the same
type as those present in the list. The element in the 0th index position of
the list is popped. If the input list is empty an error is returned.

2. Append: input is a list and an element of the same type as those present
in the list. Output is a new list of length one greater than the input list
with the element appended at the end.

3. create graph node outputs a list of edges. Its input is a list of nodes.

The definitions of the standard library functions are beyond the scope of this
reference manual. Additional functions may be subsequently added to the stan-
dard library if deemed necessary.

12 Structure of the Program

Our program has the following structure:

1. The files to be included

2. The function declarations of all the functions used in the current program

3. The main function: Every GAL program must have a main function which
returns an int. It is the only function which need not be declared in the
function declaration step. It takes no input arguments. It must contain a

return (1) ;

at the end of its control flow. The absence of this return statement will
generate an error. The definition of the main function is thus as follows:

14

i n t main (){
/∗compound statements , l oops e t c ∗/
return (1) ;
}

Its optional definition is

de f i n t main () ;

4. Other function definitions (only functions declared earlier can be defined).
These definitions may occur anywhere in the program after the function
declaration section, before or after the definition of the main function.

The main function is the entry point and its return statement is the exit point
of every GAL program which successfully executes.

13 Sample Code

A sample function in GAL for a breadth first search with the root as the first
element of the input list is shown below:

de f l i s t BFS(l i s t l i s t i n) ; /∗The BFS func t i on i s de f ined ∗/

i n t main (){/∗The main func t i on ; Note how the main func t i on was
not e x p l i c i t l y dec l a r ed ∗/

/∗ v a r i a b l e s are dec l a r ed ∗/
de f edge e1 ;
de f edge e2 ;
de f edge e3 ;
de f l i s t (n ew l i s t , edge , 4) ;
de f l i s t (l i s t o p , edge , 4) ;

/∗ v a r i a b l e s are de f ined ∗/
e1 = |”A” ,2 ,”B” | ;
e2 = |”B” ,3 ,”C” | ;
e3 = |”C” ,1 ,”D” | ;
e4 = |”C” ,4 ,”E ” | ;
n e w l i s t = [e1 ; e2 ; e3 ; e4] ;

/∗ n e w l i s t i s a l i s t o f edges so c reate graph node need not be
c a l l e d to c r e a t e a graph c o n s i s t i n g o f a l i s t o f edges ∗/

l i s t o p = BFS(n e w l i s t) ; /∗ f unc t i on c a l l to BFS∗/
/∗ note how n e w l i s t and l i s t i n which i s used in the func t i on
d e c l a r a t i o n are d i f f e r e n t names but o f same type ∗/

return (1) ; /∗ re turn statement in main∗/
}/∗main ends ∗/

de f l i s t BFS(l i s t i n p u t l i s t){/∗ f unc t i on d e f i n i t i o n . i n p u t l i s t and
l i s t i n which was used in the func t i on d e c l a t i o n are d i f f e r e n t names

15

but o f same type ∗/

/∗ v a r i a b l e s are dec l a r ed ∗/
de f l i s t (a , edge , 0) ;
de f l i s t (v i s i t e d , edge , 0) ;

de f l i s t (root , edge , 0) ;
de f l i s t (queue , s t r i ng , 0) ;
de f s t r i n g node1 ;
de f i n t j = 0 ;
de f i n t i = 0 ;
de f i n t k = 0 ;

a = i n p u t l i s t ;

append (root , s r c (a [0])) ;
queue = root ;

f o r (i =0; i <9999999; i=i +1){
i f (l en (queue) !=0){

node1 = pop (queue) ;
append (v i s i t e d , node1) ;

f o r (j= 0 ; j < l en (a) ; j = j +1){

i f (s r c (a [j]) == node1){
f o r (k = 0 ; k < l en (v i s i t e d) ; k++){

i f (des t (a [j]) != v i s i t e d [k]) {
append (queue , des t (a [j])) ;

}
e l s e {
;
}

}

}
e l s e {

;
}

}
}

e l s e {
break ;

}
}

16

re turn (v i s i t e d) ;
}

17

