
Programming Languages and Translators

Stephen A. Edwards

Columbia University

Summer 2016

Pieter Bruegel, The Tower of Babel, 1563

Facebook on 4115

Sadly, Aho has retired.

Instructor

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

http://www.cs.columbia.edu/~sedwards/

462 Computer Science Building

Email me for appointments

Culpa on 4115

Objectives

Theory

Ï Principles of modern programming languages
Ï Fundamentals of compilers: parsing, type checking,

code generation
Ï Models of computation

Practice: Semester-long Team Project

Ï Design and implement your own language and
compiler

Ï Code it in the OCaml functional language
Ï Manage the project and your teammates; communicate

Quasi-required Text

Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques,
and Tools.

Addison-Wesley, 2006. Second
Edition.

Bug Al about all bugs.

You can get away with the first
edition.

Schedule

Lectures: Mondays and Wednesdays, 5:30 – 8:40 PM

July 6 – August 10

Final: Wednesday, August 10

Presentations: August 11

Final project reports: August 11

You can present before August 11 if you want to travel
early. All group members must present.

Assignments and Grading

50% Programming Project

40% Final

10% Two individual homework assignments

Project is most important, but most students do well on it.
Grades for tests often vary more.

Prerequisites

COMS W3157 Advanced Programming

Ï How to work on a large software system in a team
Ï Makefiles, version control, test suites
Ï Testing will be as important as development

COMS W3261 Computer Science Theory

Ï Regular languages and expressions
Ï Context-free grammars
Ï Finite automata (NFAs and DFAs)

Collaboration

Collaborate with your team on the project.

Do your homework by yourself.

Tests: Will be closed book with a one-page “cheat sheet” of
your own devising.

Don’t be a cheater (e.g., copy from each other):
If you’re dumb enough to cheat,

I’m smart enough to catch you.

Every term I’ve caught cheaters and sent them to the dean.
Please try to break my streak.

The Project

The Project

Design and implement your own little language.

Six deliverables:

1. A proposal describing your language

2. A language reference manual defining it formally

3. An intermediate milestone: compiling “Hello World.”

4. A compiler for it, running sample programs

5. A final project report

6. A final project presentation

Teams

Immediately start forming four-person teams

Each team will develop its own language

Assign each team member a specific role

Role Responsibilities

Manager Timely completion of deliverables

Language Guru Language design

System Architect Compiler architecture,
development environment

Tester Test plan, test suites

Culpa Suggestion

First Three Tasks

1. Decide who you will work with
You’ll be stuck with them for the term; choose wisely.

2. Assign a role to each member
Languages come out better from dictatorships, not
democracies.

3. Select a weekly meeting time
Harder than you might think.

Project Proposal

Describe the language that you plan to implement.

Explain what sorts of programs are meant to be written in
your language

Explain the parts of your language and what they do

Include the source code for an interesting program in your
language

2–4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your
language.

Follow the style of the C language reference manual
(Appendix A of Kernighan and Ritchie, The C Programming
Langauge; see the class website).

Final Report Sections

Section Author

Introduction Team

Tutorial Team

Reference Manual Team

Project Plan Manager

Language Evolution Language Guru

Translator Architecture System Architect

Test plan and scripts Tester

Conclusions Team

Full Code Listing Team

Project Due Dates

Proposal July 11 soon

Language Reference Manual July 20

Hello World Demo August 1

Final Report August 11

Design a language?

A domain-specific language: awk or PHP, not Java or C++.

Examples from earlier terms:

Matlab-like array manipulation language

Geometric figure drawing language

Screenplay animation language

Escher-like pattern generator

Music manipulation language

Mathematical function manipulator

Simple scripting language (à lá Tcl)

Three Common Mistakes to Avoid
Configuration File Syndrome

Ï Must be able to express algorithms, not just data
Ï E.g., a program like “a bird and a turtle and a pond and

grass and a rock,” is just data, not an algorithm

Standard Library Syndrome

Ï Good languages express lots by a combining few things
Ï Write a standard library in your language
Ï Aim for Legos, not Microsoft Word

Java-to-Java Translator Syndrome

Ï A compiler mostly adds implementation details to code
Ï Your compiler’s output should not look like its input
Ï Try your best not to re-invent Java

What I’m Looking For

Your language must be able to express different algorithms

Ï Avoid Configuration File Syndrome. Most languages
should be able to express, e.g., the GCD algorithm.

Your language should consist of pieces that can mix freely

Ï Avoid Standard Library Syndrome. For anything you
provide in the language, ask yourself whether you can
express it using other primitives in your language.

Your compiler must lower the level of abstraction

Ï Don’t write a Java-to-Java translator. Make sure your
compiler adds details to the output such as registers,
evaluation order of expressions, stack management
instructions, etc.

What’s in a Language?

Components of a language: Syntax

How characters combine to form words, sentences,
paragraphs.

The quick brown fox jumps over the lazy dog.

is syntactically correct English, but isn’t a Java program.

class Foo {
public int j;
public int foo(int k) { return j + k; }

}

is syntactically correct Java, but isn’t C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

expr → expr+expr
| expr − expr
| expr ∗ expr
| expr / expr
| digit
| (expr)

Components of a language: Semantics
What a well-formed program “means.”

The semantics of C says this computes the nth Fibonacci
number.

int fib(int n)
{
int a = 0, b = 1;
int i;
for (i = 1 ; i < n ; i++) {
int c = a + b;
a = b;
b = c;

}
return b;

}

‘When I use a
word,’ Humpty
Dumpty said in
rather a scornful
tone, ‘it means
just what I
choose it to
mean—neither
more nor less.’

Source: Lewis Carroll, Through the Looking Glass, 1872.

Semantics

Something may be syntactically correct but semantically
nonsensical

The rock jumped through the hairy planet.

Or ambiguous

The chickens are ready to eat.

Semantics

Nonsensical in Java:

class Foo {
int bar(int x) { return Foo; }

}

Ambiguous in Java:

class Bar {
public float foo() { return 0; }
public int foo() { return 0; }

}

Great Moments in
Evolution

Assembly Language

Before: numbers
55
89E5
8B4508
8B550C
39D0
740D
39D0
7E08
29D0
39D0
75F6
C9
C3
29C2
EBF6

After: Symbols
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

FORTRAN

Before
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

After: Expressions, control-flow
10 if (a .EQ. b) goto 20

if (a .LT. b) then
a = a - b

else
b = b - a

endif
goto 10

20 end

99 Bottles of Beer in FORTRAN
program ninetyninebottles
integer bottles
bottles = 99

1 format (I2, A)
2 format (A)
3 format (I2, A, /)
4 format (A, /)
10 write (*,1) bottles, ’ bottles of beer on the wall,’

write (*,1) bottles, ’ bottles of beer.’
write (*,2) ’Take one down, pass it around...’
if (bottles - 1 .gt. 1) then

write (*,3) bottles - 1, ’ bottles of beer on the wall.’
else

write (*,3) bottles - 1, ’ bottle of beer on the wall.’
end if
bottles = bottles - 1
if (bottles - 1) 30, 20, 10

* Last verse
20 write (*,1) bottles, ’ bottle of beer on the wall,’

write (*,1) bottles, ’ bottle of beer.’
write (*,2) ’Take one down, pass it around...’
write (*,4) ’No bottles of beer on the wall.’

30 stop
end

Alex Ford,
http://www.99-bottles-of-beer.net/language-fortran-77-760.html

http://www.99-bottles-of-beer.net/language-fortran-77-760.html

99 Bottles of Beer in FORTRAN
program ninetyninebottles
integer bottles
bottles = 99

1 format (I2, A)
2 format (A)
3 format (I2, A, /)
4 format (A, /)
10 write (*,1) bottles, ’ bottles of beer on the wall,’

write (*,1) bottles, ’ bottles of beer.’
write (*,2) ’Take one down, pass it around...’
if (bottles - 1 .gt. 1) then

write (*,3) bottles - 1, ’ bottles of beer on the wall.’
else

write (*,3) bottles - 1, ’ bottle of beer on the wall.’
end if
bottles = bottles - 1
if (bottles - 1) 30, 20, 10

* Last verse
20 write (*,1) bottles, ’ bottle of beer on the wall,’

write (*,1) bottles, ’ bottle of beer.’
write (*,2) ’Take one down, pass it around...’
write (*,4) ’No bottles of beer on the wall.’

30 stop
end

Backus, IBM, 1956

Imperative language for science
and engineering

First compiled language

Fixed format lines (for punch cards)

Arithmetic expressions, If, Do, and
Goto statements

Scalar (number) and array types

Limited string support

Still common in high-performance
computing

Inspired most modern languages,
especially BASIC

Alex Ford,
http://www.99-bottles-of-beer.net/language-fortran-77-760.html

http://www.99-bottles-of-beer.net/language-fortran-77-760.html

COBOL
Added type declarations, record types, file manipulation

data division.
file section.
* describe the input file
fd employee-file-in

label records standard
block contains 5 records
record contains 31 characters
data record is employee-record-in.

01 employee-record-in.
02 employee-name-in pic x(20).
02 employee-rate-in pic 9(3)v99.
02 employee-hours-in pic 9(3)v99.
02 line-feed-in pic x(1).

Grace Hopper et al.

From cafepress.com

LISP, Scheme, Common LISP

Functional, high-level languages

(defun gnome-doc-insert ()
"Add a documentation header to the current function.

Only C/C++ function types are properly supported currently."
(interactive)
(let (c-insert-here (point))
(save-excursion

(beginning-of-defun)
(let (c-arglist

c-funcname
(c-point (point))
c-comment-point
c-isvoid
c-doinsert)

(search-backward "(")
(forward-line -2)
(while (or (looking-at "^$")

(looking-at "^ *}")
(looking-at "^ *")
(looking-at "^#"))

(forward-line 1))

99 Bottles of Beer in LISP

(defun bottles-of-bier (n)
(case n
(0
’(No more bottles of beer on the wall no more bottles of beer.

Go to the store and buy some more 99 bottles of beer on the wall.))
(1
‘(1 bottle of beer on the wall 1 bottle of beer.

Take one down and pass it around no more bottles of beer on the wall.
,@(bottles-of-bier 0)))

(2
‘(2 bottles of beer on the wall 2 bottles of beer.

Take one down and pass it around 1 bottle of beer on the wall.
,@(bottles-of-bier 1)))

(t
‘(,n bottles of beer on the wall ,n bottles of beer.

Take one down and pass it around
,(1- n) bottles of beer on the wall.
,@(bottles-of-bier (1- n))))))

jimka, http://www.99-bottles-of-beer.net/language-lisp-1465.html

http://www.99-bottles-of-beer.net/language-lisp-1465.html

99 Bottles of Beer in LISP

(defun bottles-of-bier (n)
(case n
(0
’(No more bottles of beer on the wall no more bottles of beer.

Go to the store and buy some more 99 bottles of beer on the wall.))
(1
‘(1 bottle of beer on the wall 1 bottle of beer.

Take one down and pass it around no more bottles of beer on the wall.
,@(bottles-of-bier 0)))

(2
‘(2 bottles of beer on the wall 2 bottles of beer.

Take one down and pass it around 1 bottle of beer on the wall.
,@(bottles-of-bier 1)))

(t
‘(,n bottles of beer on the wall ,n bottles of beer.

Take one down and pass it around
,(1- n) bottles of beer on the wall.
,@(bottles-of-bier (1- n))))))

McCarthy, MIT, 1958

Functional: recursive, list-focused
functions

Semantics from Church’s Lambda
Calculus

Simple, heavily parenthesized
S-expression syntax

Dynamically typed

Automatic garbage collection

Originally for AI applications

Dialects: Scheme and Common Lisp

jimka, http://www.99-bottles-of-beer.net/language-lisp-1465.html

http://www.99-bottles-of-beer.net/language-lisp-1465.html

APL
Powerful operators, interactive language, custom character
set

“Emoticons for Mathematicians”
Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html

At right: Datamedia APL Keyboard

99 Bottles of Beer in APL

http://www.99-bottles-of-beer.net/language-apl-715.html

http://www.99-bottles-of-beer.net/language-apl-715.html

99 Bottles of Beer in APL
Iverson, IBM, 1960

Imperative, matrix-centric

E.g., perform an operation on each
element of a vector

Uses own specialized character set

Concise, effectively cryptic

Primarily symbols instead of words

Dynamically typed

Odd left-to-right evaluation policy

Useful for statistics, other
matrix-oriented applications

http://www.99-bottles-of-beer.net/language-apl-715.html

http://www.99-bottles-of-beer.net/language-apl-715.html

Algol, Pascal, Clu, Modula, Ada
Imperative, block-structured language, formal syntax
definition, structured programming

PROC insert = (INT e, REF TREE t)VOID:
NB inserts in t as a side effect
IF TREE(t) IS NIL THEN

t := HEAP NODE := (e, TREE(NIL), TREE(NIL))
ELIF e < e OF t THEN insert(e, l OF t)
ELIF e > e OF t THEN insert(e, r OF t)
FI;

PROC trav = (INT switch, TREE t, SCANNER continue,
alternative)VOID:

traverse the root node and right sub-tree of t only.
IF t IS NIL THEN continue(switch, alternative)
ELIF e OF t <= switch THEN

print(e OF t);
traverse(switch, r OF t, continue, alternative)

ELSE # e OF t > switch #
PROC defer = (INT sw, SCANNER alt)VOID:

trav(sw, t, continue, alt);
alternative(e OF t, defer)

FI;

Algol-68, source http://www.csse.monash.edu.au/~lloyd/tildeProgLang/Algol68/treemerge.a68

SNOBOL, Icon
String-processing languages

LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@’
SP.CH = "+-,=.*()’/& "
SCOTA = SP.CH
SCOTA ’&’ =
Q = "’"
QLIT = Q FENCE BREAK(Q) Q
ELEM = QLIT | ’L’ Q | ANY(SCOTA) | BREAK(SCOTA) | REM
F3 = ARBNO(ELEM FENCE)
B = (SPAN(’ ’) | RPOS(0)) FENCE
F1 = BREAK(’ ’) | REM
F2 = F1
CAOP = (’LCL’ | ’SET’) ANY(’ABC’) |

+ ’AIF’ | ’AGO’ | ’ACTR’ | ’ANOP’
ATTR = ANY(’TLSIKN’)
ELEMC = ’(’ FENCE *F3C ’)’ | ATTR Q | ELEM
F3C = ARBNO(ELEMC FENCE)
ASM360 = F1 . NAME B

+ (CAOP . OPERATION B F3C . OPERAND |
+ F2 . OPERATION B F3 . OPERAND)
+ B REM . COMMENT

SNOBOL: Parse IBM 360 assembly. From Gimpel’s book, http://www.snobol4.org/

BASIC

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT A$
30 IF A$ <> "5" THEN GOTO 60
40 PRINT "GOOD JOB, YOU GUESSED IT"
50 GOTO 100
60 PRINT "YOU ARE WRONG. TRY AGAIN"
70 GOTO 10
100 END

Invented at Dartmouth by
John George Kemeny and
Thomas Eugene Kurtz. Started
the whole Bill Gates/ Microsoft
thing.

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

class Shape(x, y); integer x; integer y;
virtual: procedure draw;
begin

comment - get the x & y coordinates -;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;

comment - set the x & y coordinates -;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
end Shape;

99 Bottles of Beer in Java

class Bottles {
public static void main(String args[]) {
String s = "s";
for (int beers=99; beers>-1;) {
System.out.print(beers+" bottle"+s+" of beer on the wall, ");
System.out.println(beers + " bottle" + s + " of beer, ");
if (beers==0) {

System.out.print("Go to the store, buy some more, ");
System.out.println("99 bottles of beer on the wall.\n");
System.exit(0);

} else
System.out.print("Take one down, pass it around, ");

s = (--beers == 1)?"":"s";
System.out.println(beers+" bottle"+s+" of beer on the wall.\n");

}
}

}

Sean Russell,
http://www.99-bottles-of-beer.net/language-java-4.html

http://www.99-bottles-of-beer.net/language-java-4.html

99 Bottles of Beer in Java

class Bottles {
public static void main(String args[]) {
String s = "s";
for (int beers=99; beers>-1;) {
System.out.print(beers+" bottle"+s+" of beer on the wall, ");
System.out.println(beers + " bottle" + s + " of beer, ");
if (beers==0) {

System.out.print("Go to the store, buy some more, ");
System.out.println("99 bottles of beer on the wall.\n");
System.exit(0);

} else
System.out.print("Take one down, pass it around, ");

s = (--beers == 1)?"":"s";
System.out.println(beers+" bottle"+s+" of beer on the wall.\n");

}
}

}

Gosling et al., Sun, 1991

Imperative, object-oriented,
threaded

Based on C++, C, Algol, etc.

Statically typed

Automatic garbage collection

Architecturally neutral

Defined on a virtual machine (Java
Bytecode)

Sean Russell,
http://www.99-bottles-of-beer.net/language-java-4.html

http://www.99-bottles-of-beer.net/language-java-4.html

C

Efficiency for systems programming

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

99 Bottles of Beer in C
#define MAXBEER 99
void chug(int beers);

int main()
{
int beers;
for(beers = MAXBEER; beers; chug(beers--)) ;
puts("\nTime to buy more beer!\n");
return 0;

}

void chug(int beers)
{
char howmany[8], *s;
s = beers != 1 ? "s" : "";
printf("%d bottle%s of beer on the wall,\n", beers, s);
printf("%d bottle%s of beeeeer . . . ,\n", beers, s);
printf("Take one down, pass it around,\n");
if (--beers) sprintf(howmany, "%d", beers);
else strcpy(howmany, "No more");
s = beers != 1 ? "s" : "";
printf("%s bottle%s of beer on the wall.\n", howmany, s);

}

Bill Wein, http://www.99-bottles-of-beer.net/language-c-116.html

http://www.99-bottles-of-beer.net/language-c-116.html

99 Bottles of Beer in C
#define MAXBEER 99
void chug(int beers);

int main()
{
int beers;
for(beers = MAXBEER; beers; chug(beers--)) ;
puts("\nTime to buy more beer!\n");
return 0;

}

void chug(int beers)
{
char howmany[8], *s;
s = beers != 1 ? "s" : "";
printf("%d bottle%s of beer on the wall,\n", beers, s);
printf("%d bottle%s of beeeeer . . . ,\n", beers, s);
printf("Take one down, pass it around,\n");
if (--beers) sprintf(howmany, "%d", beers);
else strcpy(howmany, "No more");
s = beers != 1 ? "s" : "";
printf("%s bottle%s of beer on the wall.\n", howmany, s);

}

Dennis Ritchie, Bell Labs, 1969

Procedural, imperative

Based on Algol, BCPL

Statically typed; liberal conversion
policies

Harmonizes with processor
architecture

For systems programming: unsafe
by design

Remains language of choice for
operating systems

Bill Wein, http://www.99-bottles-of-beer.net/language-c-116.html

http://www.99-bottles-of-beer.net/language-c-116.html

ML, Miranda, Haskell

Functional languages with types and syntax

structure RevStack = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =
(case s

of [] => true
| _ => false)

fun top (s:’a stack): =
(case s

of [] => raise Empty
| x::xs => x)

fun pop (s:’a stack):’a stack =
(case s

of [] => raise Empty
| x::xs => xs)

fun push (s:’a stack,x: ’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

99 Bottles of Beer in Haskell
bottles :: Int -> String
bottles n
| n == 0 = "no more bottles"
| n == 1 = "1 bottle"
| n > 1 = show n ++ " bottles"

verse :: Int -> String
verse n
| n == 0 = "No more bottles of beer on the wall, "

++ "no more bottles of beer.\n"
++ "Go to the store and buy some more, "
++ "99 bottles of beer on the wall."

| n > 0 = bottles n ++ " of beer on the wall, "
++ bottles n
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles (n-1) ++ " of beer on the wall.\n"

main = mapM (putStrLn . verse) [99,98..0]

Simon Johansson,

http://www.99-bottles-of-beer.net/language-haskell-1613.html

http://www.99-bottles-of-beer.net/language-haskell-1613.html

99 Bottles of Beer in Haskell
bottles :: Int -> String
bottles n
| n == 0 = "no more bottles"
| n == 1 = "1 bottle"
| n > 1 = show n ++ " bottles"

verse :: Int -> String
verse n
| n == 0 = "No more bottles of beer on the wall, "

++ "no more bottles of beer.\n"
++ "Go to the store and buy some more, "
++ "99 bottles of beer on the wall."

| n > 0 = bottles n ++ " of beer on the wall, "
++ bottles n
++ " of beer.\n"
++ "Take one down and pass it around, "
++ bottles (n-1) ++ " of beer on the wall.\n"

main = mapM (putStrLn . verse) [99,98..0]

Peyton Jones et al., 1990

Functional

Pure: no side-effects

Lazy: computation only on
demand; infinite data structures

Statically typed; types inferred

Algebraic data types, pattern
matching, lists, strings

Great for compilers,
domain-specific languages, type
system research

Related to ML, OCaml

Simon Johansson,

http://www.99-bottles-of-beer.net/language-haskell-1613.html

http://www.99-bottles-of-beer.net/language-haskell-1613.html

sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

class() {
classname=‘echo "$1" | sed -n ’1 s/ *:.*$//p’‘
parent=‘echo "$1" | sed -n ’1 s/^.*: *//p’‘
hppbody=‘echo "$1" | sed -n ’2,$p’‘

forwarddefs="$forwarddefs
class $classname;"

if (echo $hppbody | grep -q "$classname()"); then
defaultconstructor=

else
defaultconstructor="$classname() {}"

fi
}

99 Bottles of Beer in AWK
BEGIN {

for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {

return sprintf("%s bottle%s of beer", n?n:"No more", n-1?"s":"")
}
function lbottle(n) {

return sprintf("%s bottle%s of beer", n?n:"no more", n-1?"s":"")
}
function action(n) {

return sprintf("%s", n ? "Take one down and pass it around," : \
"Go to the store and buy some more,")

}
function inext(n) {

return n ? n - 1 : 99
}

OsamuAoki,
http://www.99-bottles-of-beer.net/language-awk-1623.html

http://www.99-bottles-of-beer.net/language-awk-1623.html

99 Bottles of Beer in AWK
BEGIN {

for(i = 99; i >= 0; i--) {
print ubottle(i), "on the wall,", lbottle(i) "."
print action(i), lbottle(inext(i)), "on the wall."
print

}
}
function ubottle(n) {

return sprintf("%s bottle%s of beer", n?n:"No more", n-1?"s":"")
}
function lbottle(n) {

return sprintf("%s bottle%s of beer", n?n:"no more", n-1?"s":"")
}
function action(n) {

return sprintf("%s", n ? "Take one down and pass it around," : \
"Go to the store and buy some more,")

}
function inext(n) {

return n ? n - 1 : 99
}

Aho, Weinberger, and Kernighan,
Bell Labs, 1977

Interpreted domain-specific
scripting language for text
processing

Pattern-action statements matched
against input lines

C-inspired syntax

Automatic garbage collection

OsamuAoki,
http://www.99-bottles-of-beer.net/language-awk-1623.html

http://www.99-bottles-of-beer.net/language-awk-1623.html

AWK (bottled version)
BEGIN{
split(\
"no mo"\
"rexxN"\
"o mor"\
"exsxx"\
"Take "\
"one dow"\
"n and pas"\

"s it around"\
", xGo to the "\
"store and buy s"\
"ome more, x bot"\
"tlex of beerx o"\
"n the wall" , s,\
"x"); for(i=99 ;\
i>=0; i--){ s[0]=\
s[2] = i ; print \
s[2 + !(i)] s[8]\
s[4+ !(i-1)] s[9]\
s[10]", " s[!(i)]\
s[8] s[4+ !(i-1)]\
s[9]".";i?s[0]--:\
s[0] = 99; print \
s[6+!i]s[!(s[0])]\
s[8] s[4 +!(i-2)]\
s[9]s[10] ".\n";}}Wilhelm Weske,

http://www.99-bottles-of-beer.net/language-awk-1910.html

http://www.99-bottles-of-beer.net/language-awk-1910.html

99 Bottles of Beer in Python

for quant in range(99, 0, -1):
if quant > 1:

print quant, "bottles of beer on the wall,", \
quant, "bottles of beer."

if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the wall."

else:
suffix = "1 bottle of beer on the wall."

elif quant == 1:
print "1 bottle of beer on the wall, 1 bottle of beer."
suffix = "no more beer on the wall!"

print "Take one down, pass it around,", suffix
print ""

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

http://www.99-bottles-of-beer.net/language-python-808.html

99 Bottles of Beer in Python

for quant in range(99, 0, -1):
if quant > 1:

print quant, "bottles of beer on the wall,", \
quant, "bottles of beer."

if quant > 2:
suffix = str(quant - 1) + " bottles of beer on the wall."

else:
suffix = "1 bottle of beer on the wall."

elif quant == 1:
print "1 bottle of beer on the wall, 1 bottle of beer."
suffix = "no more beer on the wall!"

print "Take one down, pass it around,", suffix
print ""

Guido van Rossum, 1989

Object-oriented, imperative

General-purpose scripting
language

Indentation indicates grouping

Dynamically typed

Automatic garbage collection

Gerold Penz,
http://www.99-bottles-of-beer.net/language-python-808.html

http://www.99-bottles-of-beer.net/language-python-808.html

99 Bottles of Beer in FORTH
: .bottles (n -- n-1)

dup 1 = IF ." One bottle of beer on the wall," CR
." One bottle of beer," CR
." Take it down,"

ELSE dup . ." bottles of beer on the wall," CR
dup . ." bottles of beer," CR
." Take one down,"

THEN
CR
." Pass it around," CR
1-
?dup IF dup 1 = IF ." One bottle of beer on the wall;"

ELSE dup . ." bottles of beer on the wall;"
THEN

ELSE ." No more bottles of beer on the wall."
THEN
CR

;
: nbottles (n --)

BEGIN .bottles ?dup NOT UNTIL ;

99 nbottles

Dan Reish,
http://www.99-bottles-of-beer.net/language-forth-263.html

http://www.99-bottles-of-beer.net/language-forth-263.html

99 Bottles of Beer in FORTH
: .bottles (n -- n-1)

dup 1 = IF ." One bottle of beer on the wall," CR
." One bottle of beer," CR
." Take it down,"

ELSE dup . ." bottles of beer on the wall," CR
dup . ." bottles of beer," CR
." Take one down,"

THEN
CR
." Pass it around," CR
1-
?dup IF dup 1 = IF ." One bottle of beer on the wall;"

ELSE dup . ." bottles of beer on the wall;"
THEN

ELSE ." No more bottles of beer on the wall."
THEN
CR

;
: nbottles (n --)

BEGIN .bottles ?dup NOT UNTIL ;

99 nbottles

Moore, NRAO, 1973

Stack-based imperative language

Trivial, RPN-inspired grammar

Easily becomes cryptic

Untyped

Low-level, very lightweight

Highly extensible: easy to make
programs compile themselves

Used in some firmware boot
systems (Apple, IBM, Sun)

Inspired the PostScript language
for laser printers

Dan Reish,
http://www.99-bottles-of-beer.net/language-forth-263.html

http://www.99-bottles-of-beer.net/language-forth-263.html

The Whitespace Language

Edwin Brady and Chris Morris, April
1st, 2003

Imperative, stack-based language

Space, Tab, and Line Feed
characters only

Number literals in binary: Space=0,
Tab=1, LF=end

Less-than-programmer-friendly
syntax; reduces toner consumption

Andrew Kemp, http://compsoc.dur.ac.uk/whitespace/

http://compsoc.dur.ac.uk/whitespace/

VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming

Visicalc on the Apple II, c. 1979

SQL

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t-shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM(’red’, ’blue’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL

REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’blue’, LAST_INSERT_ID());

From thinkgeek.com

99 Bottles of Beer in SQL
SELECT
CASE (bottlecount)
WHEN 0 THEN ’No more bottle of beer on the wall, no more bottles of beer. ’ ||

’Go to the store and buy some more, 99 bottles of beer on the wall.’
WHEN 1 THEN ’1 bottle of beer on the wall, 1 bottle of beer. ’ ||

’Take one down and pass it around, no more bottles of beer on the wall.’
WHEN 2 THEN ’2 bottles of beer on the wall, 2 bottles of beer. ’ ||

’Take one down and pass it around, 1 bottle of beer on the wall.’
ELSE
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer on the wall, ’ ||
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer. ’ ||
’Take one down and pass it around, ’ ||
rtrim (cast((BottleCount)-1 as char(2))) || ’ bottles of beer on the wall.’

END
FROM
(
SELECT avalue * 10 + bvalue as bottlecount
FROM
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) a(avalue),
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) b(bvalue)

) as valuelist;

Kent Olsen,
http://www.99-bottles-of-beer.net/language-sql-967.html

http://www.99-bottles-of-beer.net/language-sql-967.html

99 Bottles of Beer in SQL
SELECT
CASE (bottlecount)
WHEN 0 THEN ’No more bottle of beer on the wall, no more bottles of beer. ’ ||

’Go to the store and buy some more, 99 bottles of beer on the wall.’
WHEN 1 THEN ’1 bottle of beer on the wall, 1 bottle of beer. ’ ||

’Take one down and pass it around, no more bottles of beer on the wall.’
WHEN 2 THEN ’2 bottles of beer on the wall, 2 bottles of beer. ’ ||

’Take one down and pass it around, 1 bottle of beer on the wall.’
ELSE
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer on the wall, ’ ||
rtrim (cast((BottleCount) as char(2))) || ’ bottles of beer. ’ ||
’Take one down and pass it around, ’ ||
rtrim (cast((BottleCount)-1 as char(2))) || ’ bottles of beer on the wall.’

END
FROM
(
SELECT avalue * 10 + bvalue as bottlecount
FROM
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) a(avalue),
(VALUES (9), (8), (7), (6), (5), (4), (3), (2), (1), (0)) b(bvalue)

) as valuelist;

Chamberlin and Boyce, IBM, 1974

Declarative language for databases

Semantics based on the relational
model

Queries on tables: select with
predicates, joining, aggregating

Database query optimization:
declaration to procedure

Kent Olsen,
http://www.99-bottles-of-beer.net/language-sql-967.html

http://www.99-bottles-of-beer.net/language-sql-967.html

Prolog

Logic Language

witch(X) <= burns(X) and female(X).
burns(X) <= wooden(X).
wooden(X) <= floats(X).
floats(X) <= sameweight(duck, X).

female(girl). {by observation}
sameweight(duck,girl). {by experiment }

? witch(girl).

99 Bottles of Beer in Prolog

bottles :-
bottles(99).

bottles(1) :-
write(’1 bottle of beer on the wall, 1 bottle of beer,’), nl,
write(’Take one down, and pass it around,’), nl,
write(’Now they are all gone.’), nl,!.

bottles(X) :-
write(X), write(’ bottles of beer on the wall,’), nl,
write(X), write(’ bottles of beer,’), nl,
write(’Take one down and pass it around,’), nl,
NX is X - 1,
write(NX), write(’ bottles of beer on the wall.’), nl, nl,
bottles(NX).

Remko Trocon et al.,
http://www.99-bottles-of-beer.net/language-prolog-965.html

http://www.99-bottles-of-beer.net/language-prolog-965.html

99 Bottles of Beer in Prolog

bottles :-
bottles(99).

bottles(1) :-
write(’1 bottle of beer on the wall, 1 bottle of beer,’), nl,
write(’Take one down, and pass it around,’), nl,
write(’Now they are all gone.’), nl,!.

bottles(X) :-
write(X), write(’ bottles of beer on the wall,’), nl,
write(X), write(’ bottles of beer,’), nl,
write(’Take one down and pass it around,’), nl,
NX is X - 1,
write(NX), write(’ bottles of beer on the wall.’), nl, nl,
bottles(NX).

Alain Colmerauer et al., 1972

Logic programming language

Programs are relations: facts and
rules

Program execution consists of
trying to satisfy queries

Designed for natural language
processing, expert systems, and
theorem proving

Remko Trocon et al.,
http://www.99-bottles-of-beer.net/language-prolog-965.html

http://www.99-bottles-of-beer.net/language-prolog-965.html

	The Project
	What's in a Language?
	Great Moments in Evolution

