
MiniMat: a flexible minimal language to build matrix
expressions

Terence Lim - tl2735@columbia.edu

June 8, 2016

Proposal

I propose a minimal language, MiniMat, to support matrix-based programming, which con-
tains a core set of primitives that can be assembled into more complicated abstractions for
matrix expressions, linear algebraic formulas and statistical algorithms.

The compiler front end components (lexer, parser, semantic analysis and intermediate
code generation) will be written in OCaml, OCamllex, OCamlyacc and OCaml Llvm, to
translate source language into LLVM IR target code.

Usage

MiniMat is aimed at programmers from technical domains who work primarily with matrix
expressions. The language will treat the matrix as a primitive data type and accept syntax so
that matrices are easy to construct, initialize and subset, in addition to providing imperative
statements for loops (e.g. for and while), conditional flow (if-then-else), and scalar arithmetic
and boolean operators.

Rather than initially providing a legend of built-in functions and matrix operations,
MiniMat will focus on providing a core set of primitives from which users can build up the
sort of abstractions they would like. For example, we could use the MiniMat language itself
to define the matrix multiplication operation, and bind this to a new infix operator, say “.*”
(similarly, other new arithmetic and boolean operators for matrices can be defined using the
language from the corresponding primitive scalar operators). As another example, some
applications may care whether two matrices are row-equivalent (i.e. one can be changed to
the other by a sequence of elementary row operations), hence we could use the MiniMat
language to code up a new boolean equality operator, e.g. A .∼ B where A and B are of
type matrix, that computes and compares their reduced row-echelon forms. After defining
such operators, we can build-up further abstractions of matrix expressions and algorithms.

Specific course-oriented goals are addressed below:

• The user can express a variety of algorithms. The MiniMat language includes imper-
ative programming statements such as conditionals (e.g. if-then-else) and loops (e.g.
for, while), scalar arithmetic and boolean operators, and matrix data types.

Terence Lim - tl2735@columbia.edu 1

MiniMat: a flexible minimal language to build matrix expressions

• The language provides primitive building blocks. Although MiniMat targets matrix-
based programmers, it will have few built-in matrix functions: rather, the MiniMat
language itself will be used to define matrix operators and a suite of support functions.

• The compiler lowers the level of abstraction. It will translate high-level matrix and
programming statements into low-level LLVM IR instructions.

Language

In developing MiniMat, we shall endeavour to identify and include only what is absolutely
primitive, so that its ultimate intended usage, for matrix expressions and calculations, can
be expressed as code in the language itself. Chart 1 describes the primitive parts of the
language: in addition to scalar operators, control flow statements and function definitions
commonly specified in an imperative language, MiniMat shall offer the floatmat (two-
dimensional array of floats) and intvec (one-dimensional vector of ints) data types, as
well as accept syntax for constructing, selecting from and populating a matrix. Chart 2 lists
the necessary primitive “helper” functions to be written in the MiniMat language to help
the code generation component translate the matrix expression syntax.

Chart 1: Proposed Language Primitives

Category Symbols Description

Data types int bool float string integer, boolean, floating point, character string

floatmat two-dimensional matrix of floating points

intvec one-dimensional vector of integers

Scalar operators + - * / arithmetic

< == > <= >= != comparisons

&& || ! true false logical

Matrix expressions 2:5 vector of int values: 2, 3, 4, 5.

[1, 2, 3; 4, 5, 6] initialize a matrix with values

A(2:4,6) select rows 2–4, col 6 of matrix A

A(d,2) select col 2, rows in vector d of ints, of matrix A

A’ transpose

rows cols length size of matrix or vector

matnew vecnew constructors

matput vecput put a value at an index location

matget vecget get a value from an index location

Control flow if (expr) then else if statement

while (expr) while loop

for (expr ; expr ; expr) for loop

Built-in functions print exception print, raise runtime exception

defop bind function to an operator symbol

matextern vecextern call external c functions

Terence Lim - tl2735@columbia.edu 2

MiniMat: a flexible minimal language to build matrix expressions

Chart 2: “Helper” functions to be written in MIMIMAT language

Category Functions Description

Construct matrix catcol catrow catvec help build-up matrix from expression of the form:
[1 2 3; 4 5 6]

Construct vector vecints help build-up vector of int values from a colon
expression of the form: 2:5

Get matrix values matselect vecselect help select matrix of values from subset of matrix
in expression of the form: B = A[2:3,d]

Assign matrix values matassign vecassign help assign matrix of values into a subset of a
matrix in expression of the form: A[2:3,d] = B

Matrix operators matmul implement matrix multiplication and bind to .*

infix operator

Sample Program

The parts of the language and what they do can be illustrated by the following example.
First it defines a boolean function with two matrices as arguments and detects if they are
equal, in the sense that every pair of corresponding matrix items is equal; this is bound
to the “.==” operator. Next it defines a new function that converts a matrix to reduced
row-echelon form. Finally, it defines a boolean function to detect if two matrices are row-
equivalent, using earlier definitions; this is bound to the “.∼” operator. The main() function
labels the program entry point, where two sample matrices are initialized with values and
compared for row equivalence.

Listing 1: MiniMat sample code

1 /* detect two equal matrices */

2 boo l mateq (f l o a tma t a , f l o a tma t b) {
3 i n t i ;
4 i n t j ;
5 i n t m;
6 i n t n ;
7 m = rows (a) ;
8 i f (m != rows (b)) e x c e p t i o n ("mateq: unequal rows") ;
9 n = c o l s (a) ;

10 i f (n != c o l s (b)) e x c e p t i o n ("mateq: unequal columns") ;
11 j = n+1;
12 f o r (i = 1 ; i <= m && j > n ; i = i + 1) {
13 f o r (j = 1 ; j <= n && a [i , j] == b [i , j] ; j = j + 1) {
14 }
15 }
16 r e t u r n (i > m && j > n) ;
17 }
18

19 /* bind binary operator to detect matrix equality */

20 de fop mateq ".==" ;
21

22

23 /* define function to compute reduced row echelon form of a matrix */

24 mat r i x r r e f (f l o a tma t a) {

Terence Lim - tl2735@columbia.edu 3

MiniMat: a flexible minimal language to build matrix expressions

25 i n t i ;
26 i n t j ;
27 i n t k ;
28 i n t end ;
29 f l o a tma t tmp ;
30

31 end = rows (a) ;
32 wh i l e (i <= end && j <= end) {
33 k = maxindex (abs (a [i : end , j])) ;
34 k = k + i − 1 ;
35 tmp = a [k , j : end] ;
36 a [k , j : end] = a [i , j : end] ;
37 a [i , j : end] = tmp ;
38 tmp = a [i , j : end] . / a [i , j] ;
39 a [1 : end , j : end] = a [1 : end , j : end] − a [1 : end] .∗ tmp ;
40 a [i , j : end] = tmp ;
41 i = i + 1 ;
42 j = j + 1 ;
43 }
44 r e t u r n a ;
45 }
46

47 /* to detect row equivalence; use rref function to compute reduced

48 row echelon form and .== operator to detect matrix equality */

49 boo l matroweq (f l o a tma t a , f l o a tma t b) {
50 r e t u r n (r r e f (a) .== r r e f (b)) ;
51 }
52

53 /* bind binary operator to detect matrix row equivalence */

54 de fop matroweq ".~" ;
55

56 vo i d main () {
57 f l o a tma t a ;
58 f l o a tma t b ;
59 a = [5 . 0 3 .0 4 . 0 ; 2 . 0 2 . 0 4 . 0 ; 1 . 0 2 . 0 1 . 0] ;
60 b = [3 . 0 1 .0 0 . 0 ; 2 . 0 2 . 0 4 . 0 ; 1 . 0 2 . 0 1 . 0] ;
61 i f (a . ˜ b) p r i n t "Is row-equivalent" ;
62 e l s e p r i n t "Not row-equivalent" ;
63 }

Terence Lim - tl2735@columbia.edu 4

