
plOtter: A Proposal

Anish King (awk2123),
Ibrahima Niang (in2190),

Ranjith Kumar Shanmuga Visvanathan (rs3579),
Sania Arif(sa3311),

Un Sung Yoo(uy2106)

1 Introduction

plOtter is a data manipulation language built on the principles and appreciation of a minimalist aesthetic.
The goal of plOtter is to provide a means for users to design and implement their own plots to visualize
data, that would otherwise be done by rigid, automated software (such as Microsoft Excel). Our language
will simplify charting maps through domain-specific types and operations. The users can build their custom
graph templates using our language and can reuse the template to visualize different data points.
Very primitive examples could be building a bar-graph, histogram etc. Higher level examples could be
drawing small album art, or other complex examples could be to visualize/plot a binary tree, Gantt chart,
etc.

2 Syntax

The syntax for plOtter is based loosely on the syntax of python. We incorporate white space de-limitations,
if-then-else, while and break, for loops, inherent data structures, as well as user-defined data types. Also
important to a graphing-friendly language are certain built-in functions, such as line-type to plot specific
types of lines, which we incorporate.

3 Target Language and Output

As of now, we plan to compile plOtter to C, and display the output in SVG (an XML-based vector image
format for two-dimensional graphics)

3.1 Comments

Single Line #
Multi Line /* */

3.2 Built-in data types

Our language supports the following data-types:

num 32 bit floating point number
string Sequence of characters closed with double quotes
bool Boolean value
point A bi-element tuple of type num
list List of num or string elements
hash Dictionary with num or string keys

1

3.3 Operators

Arithmetic +, -, *, /, %, **
Comparison ==, ! =, <,>,<=, >=
Assignment =,+ =,− =, ∗ =, / =,% =, ∗ =
Membership in, not in
Binary &,∧, ‖,

3.4 Loops

while condition:
for init; cond; inc/dec:
for type name = start; end:
for start; end:
for variable in list:

3.5 Conditional statements

if condition:
#statements

else if condition:
#statements

else:
#statements

if condition then statement else statement

3.6 Primitive function(s)

line(point p1, point p2, hash options)
This draws a line from p1 to p2, along with the options for line type
(For example: arrow-headed, dotted, dashed, etc.)

3.7 Built-in functions

These are the functions our language provides, which can be built from the primitive blocks in plOtter:

forEachDo(list data, fn f)
This applies f1 to data.

printHorizontal(point p, string s, hash options)
This prints s, horizontally, at point p, with specified options (For example: color, size, etc.)

printVertical(point p, string s, hash options)
This prints s, vertically, at point p, with specified options (For example: color, size, etc.)

rectangle(point p, num width, num height, hash options)
This draws a rectangle of width and height, starting from p, with options (For example: color, border, etc.)

barGraph(list data, hash options)
This draws a barGraph given the data and specified options (For example: padding, max width, max height,
etc.)

We will have more functions, specific to each type of plot (For example: line plot, pie charts, etc.) similar
to the barGraph function, for the user to call.

2

The purpose of providing these built-in functions is to demonstrate the power of our lan-
guage, enabling the user to build his own custom functions, as desired.

4 Source Code

This is a sample program that gets data from a csv file, applies some options to the data and plots the data
in a bar-graph. We also supply sample code for the bar-graph function, written in plOtter, which will be pro-
vided as an in-built function to the user, to show the ability to build custom graphs/plots using our language.

1 # Function wr i t t en by user
2 fn convertToCelc ius (num f) :
3 r e turn (f −32) /1 .8
4

5 # Importing data from CSV
6 l i s t data = getDataFromAsListCSV (”data . csv ”)
7

8 # Data manipulat ions Converting Farenhe i t to Ce l c iu s
9 forEachDo (data , convertToCelc ius)

10

11 hash opt ions = {”xAxis ” : true , ”yAxis ” : true , ” xLabel ” : ”Time” , ”yLabel ” : ” Ce l c iu s ” , ” t i t l e ” : ”
Temperature with Time” , ” g r id ” : t rue }

12

13 # Cal l i ng in−bu i l t f unc t i on (which could a l t e r n a t i v e l y be implemented y user)
14 barGraph (data , opt ions)

Listing 1: Data-manipulation and Bar Graph Example

The output of the above code will be like something below.

Figure 1: Simple Bar Graph

�The function barGraph is built using primitive blocks and is provided as a built-in function. However, its
shown here to emphasize the power user can have for creating his own graph.

1 #Bar Graph
2 fn barGraph (l i s t data , hash opt ions) :
3 num mx
4 point pMax , pad = (10 ,10)
5

6 #Apply Options s p e c i f i e d by user , i f not s p e c i f i e d , use d e f a u l t s
7 opt ions = applyOptions (opt ions)
8

9 #Set t ing s i z e s e t by the user or tak ing d e f au l t
10 pMax [0] = i f ”xMax” in opt ions then opt ions . xMax e l s e 1080
11 pMax [1] = i f ”yMax” in opt ions then opt ions . yMax e l s e 1920
12

3

13

14 #Sca l i ng data to Fit on d i sp l ay approp r i a t e l y
15 mx = max(data)
16 opt ions . gap = (pMax [0] − pad [1]) /(opt ions . barWidth∗ l en (data))
17

18 f o r i in data :
19 r e c t ang l e ((s t [0] , (pMax[1]−pad [1]) ∗ i /mx) , barWidth , barHeight , opt i ons . barSty l e)
20 pad [0] += barWidth+gap

Listing 2: Snippet of code for in-built barGraph function in plOtter.

4

