GOBLAN - Graph OBject LANguage

Uni Name Role

yk2553 Yunsung Kim Project Manager
sI3368 Sameer Lal Verification & Validation
jw3046 Jee Hyun Wang Language Guru

di2997 Da Liu System Architect
sjg2174 Sean Garvey System Architect

1. Motivation

Graphs appear naturally in problems of various domains such as physics, chemistry,
sociology, linguistics etc. for the way they intuitively express entities and the complex
relationships among them. Especially in the fields of computer science and statistics, graphs are
used to represent data structures or social networks. Graphs can be used to analyze the
organization of communities or even information diffusion. One of our interests is their use in
probabilistic modelling. Bayesian statisticians use graphical models as a formalism for
describing the relationship between events. This involves using graphs to represent distributions
and formulas which ultimately generate data that is observed.

A method for exact inference in graphical models is the Junction Tree Algorithm (JTA).
JTA is an algorithm that is based on the node connectivity in a graphical model. Each node
passes to its neighboring nodes the "messages" that encode the partial information about the
posterior distribution, and the neighbors collect these messages, run a function to create its own
message, and pass it to their neighbors down the stream. The messages received by the last
node in the stream is then used to reconstruct the desired answer.

We see two components of importance with this type of algorithm: the ability to (1)
exchange messages between nodes, and (2) compute functions on the node-level using those
messages to update the data on each node. In fact, this is exactly the intuition behind many
graph algorithms. In a shortest path search (Dijkstra's algorithm), nodes pass to their neighbors
distance vectors that represent the current distance estimates, which the neighbors use to
update their own distance vectors. In a Depth First Search (DFS), every node receives search
results from its children, examines those results, checks its own value if necessary, and passes
its search result to the parent. Both of these examples fall into the paradigm of message
passing.

Representing graphs and nodes in several common languages can be tedious and time
consuming. As a result, we propose GOBLAN, a graph object language. This language focuses,
not on manipulating the graph as a whole (with the use of adjacency matrices), but rather on
exchanging data (messages) among individual nodes and using this data to update the
state/data at each node. Our goal with this project is to develop a domain specific language
which enables developers to work with graph based structures and algorithms with more ease
(and speed hopefully!) by thinking in terms of the operations of each node, which we expect to
provide a new methodology for graph programming.



2. Goals
- Intuitiveness and clarity: designing clear syntax and keywords that intuitively illustrate the
operations of a node.
- Flexibility: Allowing multiple different types of algorithms for graph structures to be
implemented with certain specifications
- Simplicity: designing a language that allow users to construct complex graph networks
and their dynamics in terms of simple, node-level operations.

3. Language Description

GOBLAN is a graph manipulation language that represents a graph as multiple node
objects, each of which conceptually consists of 3 parts - neighbors, data attributes, and object
functions which update these attributes. There are two types of such object functions. A
“synchronous” function is executed upon receiving a message from a neighboring node. An
“asynchronous” function can be called independently from the exchange of packets. These two
types of object function calls can be combined to construct an algorithm. We intend for the
language to compile to Java.

In terms of syntax, GOBLAN combines the syntactic merits of AWK, Python, and C to
give users the mixed flexibility of imperative programming, block definition, and object-oriented
programming. Each GOBLAN script is broken down into “blocks.” There are 3 types of blocks:
function definition blocks, main blocks (both similar to those in Python), and a graph definition
block. The definition of a graph is done in three sections. The “data” section declares attributes
possessed by each node, the “do” section defines the synchronous object function, and the
“catch” section defines the asynchronous object function. In the definition of both types of object
functions, the “pass” keyword is used to trigger the transfer of a package.

4. Syntax
Although the language reference manual will have the complete details of the syntax and

grammar, following is a brief description of the keywords and how they are used.

3.1 Block Declaration Keywords

Keywords Description

fun fun_name (type arg1, type arg2, defines an external function
)

graph graph_name declares a graph definition
main the main script for execution




3.2 Array

Keywords Description

len get the length of the array
remove remove the element in the array
add add element to the end of array
min output the minimum

3.2 Function Definition / Main Block Keywords (followed by keyword graph)

Keywords

Description

run

execute the asynchronous object function

3.3 Graph Definition Keywords (followed by the keyword fun)

Keywords

Description

data

begins the definition of graph attributes

do (type arg1, type arg2, ...

begins the definition of a node operation and the
arguments used for the function

pass packet to {node|all}

triggers the node to forward the specified packet to
a neighbor / all neighbors.

catch definition of an asynchronous function

self self-referring keyword for a node

pack keyword in the catch statement that refers to the
packet being passed

parents The parents of a node in a directed graph

children The set of nodes which are children of the current
node in a directed graph

neighbors All connecting nodes in an undirected graph




5. Example: Building a graph and finding the shortest path between 2 nodes

fun len(list 1):
int 1 = 0;
for x in 1{i = 1 + 1;}

return X

graph DijkstraGraph:
data{
int dist = infinity;
Node prev;
}
do(list 1) {
pkt = {sender:self, dist: self.dist};
pass ptk to all;
l.remove (self);
}
catch{
if (pack.dist + self.edge(pack.sender) < self.dist) {
self.dist = pack.dist + self.edge (pack.sender);

self.prev = pack.sender;

main:
DijkstraGraph G = read graph (max graph.json)
1l = [n for n in G.nodes];
next = G[0];
dest G[len (G.nodes)-1]
while (l.len > 0){
next = min(l, key=dist);

run next (1) ;

}

while (dest != G[0]){
print dest;
dest = dest.prev;




