
✈
Fly Language

Project Proposal

Shenlong Gu, Hsiang-Ho Lin, Carolyn Sun, Xin Xu

sg3301, hl2907, cs3101, xx2168

Motivation

Description

Features

Syntax

Primitive Data Types

Supported Data Types

Basic Keywords

Functional Syntax

Network and Distribute Syntax

Basic Types

Keywords

Sample Code

Basic Syntax

Network Application

1

Motivation

In an age of increasing deployment of distributed systems in software industry, it

is always challenging to come up with a programming paradigm that fits the nature of

distributed systems. When it comes to building distributed systems, a lot of challenges

must be taken care of. Developers need to think about the network response model,

thread management, concurrency, and the resources shared by different threads. Go

language (golang) is well-known for its concurrency primitives that make building

network applications simple. However, there are still some features that are missing in

Go, such as event-driven and functional paradigm, which we believe will significantly

empower developers in tackling the challenges in the realm of distributed systems.

Description

Fly draws inspiration from Go (golang), with the aim of simplifying the

development of network applications and distributed systems. Fly supports the

concurrent programming features in Go such as goroutine, a light-weight thread, and

channels, which are synchronized FIFO buffers for communication between light-weight

threads. Fly also features asynchronous event-driven programming, type inference and

extensive functional programming features such as lambda, pattern matching, map, and

fold. Furthermore, Fly allows code to be distributed and executed across systems. These

features allow simplified implementation of various types of distributed network services

and parallel computing. We will compile fly language to get the AST and transform it to

C++ code. We believe that the template, shared_ptr, auto, etc keywords, boost network

libraries can make it easy for us to compile our language to the target executable file.

2

Features

● Concurrency primitives to create light-weight threads and synchronized FIFO

buffers

● Event-driven primitives for asynchronous network request handling

● Capability for code to be distributed and executed across systems

● Support for syntax in common functional programming language such as lambda,

pattern matching, map and fold

Syntax

Primitive Data Types

Name Description

int Integer

char Character or small integer

bool
Boolean value. It can take one of two values:

true or false

float Single precision 32-bit floating point number

double Double precision 64-bit floating point number

null

null represents the absence of data

Ex:

if item1 == null {

3

 //statements }

Supported Data Types

Type Syntax

String

A sequence of characters.
String x = “abc”;

List

List stores a sequence of items, not

necessarily of the same type.

Use indices and square brackets to

access or update the items in the list.

list1 = [1, 3,1,2];

print(list1[1:2]);

list1[3] = 2;

Dict

Dictionary maps each key to a value, and

optimizes element lookups.

dict1 = <”John”: 17, “Mary”: 22>;

print dict1[“John”];

dict1[“Sam”] = 20;

Set

Set is an unordered collection of unique

elements. Elements are enclosed in two

dollar signs.

set1 = $”a”, ”b”,”c”$;

set1.add(“d”);

set1.find(“a”);

Basic Keywords

Keywords Syntax

4

class

Used for class declaration. It is the same

as what it is in C++.

class MyClass{

//class body }

for

The for keyword provides a compact way

to iterate over a range of values like what

is in C++.

The second version is designed for

iteration through collections and arrays.

for (i = 0; i < n; ++i) {print i;}

for (a: elems) {print a;}

while

The while statement allows continual

execution of a block of statements while a

particular condition is true.

while (a < b) { a++; print a;}

if... else...

Allows program to execute a certain

section of code, the codes in the brackets,

only if a particular test in the parenthesis

after the “if” keyword evaluates to true.

if () {} else if {} else {}

/* */

//

Provides ways to comment codes.

The first is "C-style" or "multi-line"

comment. The second is “C++-style" or

"single-line" comment.

/* comment */

// comment\n

start

This is the keyword like the main in C++

which indicates an entry point for the

program.

start {

 //statements

}

5

https://docs.oracle.com/javase/tutorial/collections/index.html

func

Used for function declaration. The

function name follows the func keyword.

The parameters are listed in the

parenthesis. Body of the function goes

after |.

func abc(type, msg) | type == “receive” {

//guard }

func abc(count, msg) | count > 2 { //guard

}

func abc(type, x:xs) { //pattern match }

Functional Syntax

Name Syntax

Lambda Expression

Anonymous functions, functions without

names.

(v1 v2 … vn -> expression)

ex: (x y -> x + y - 1)

Mapping

Applying a function to every element in

the list, which returns a list.

map function list

ex: map (x -> x + 1) [1, 2, 3];

List Comprehension

Creating a list based on existing lists.

[expression | variable <- list]

ex: [x + 1 | x <- [1, 2, 3]];

Pattern Matching

Defining computation by case analysis.

match expression with

| pattern1 -> expression1

| pattern2 -> expression2

| pattern3 -> expression3
ex:

match i with

| 1 -> “One”

6

| 2 -> “Two”

| _ -> “More”;

Fold

A family of higher order functions that

process a data structure in some order

and build a return value.

foldr function var list

ex: foldr (x y -> x + y) 5 [1,2,3,4];

Closure

A record storing a function together with

an environment.

closure1 = function v1 v2 … vn

ex:

func sum (a, b) {

 return a + b;

}

sum1 = sum(1);

sum1(2);

Network and Distribute Syntax

Basic Types

Name Syntax

chan
A synchronized FIFO blocking queue.

ch = chan();

ch <- “sa”; //executed in one thread A1

<- ch;

/*executed in thread A2, blocked until

ch <- “sa” is executed in A1*/

signal

A type supporting event-driven

programming. When signal is triggered

s = fly func1(a, b);

register s send_back;

7

inside the routine of another thread, the

callback function being binded will be

executed.

/* which means after func1(a,b) executed,

the result will be sent to the function

send_back to be executed */

Keywords

Name Syntax

fly

A goroutine keyword.

The keyword fly will put the function to be

executed in another thread or an event

poll to be executed, which means this

statement is non-blocking and we won’t

wait for the function to finish to execute

next instructions.

func add(a, b) {

return a + b;

}

fly add(2, 4);

add(1,3);

/* add(2, 4) and add(1,3) will concurrently

execute*/

register

An event-driven asynchronous keyword.

We bind a closure with a signal, and when

this signal is triggered, the closure is

executed asynchronously.

register s send_back_to_client(server);

dispatch

A distributed computing keyword.

We dispatch a function with parameters

to be executed in a machine with ip and

port specified. This statement will return a

signal much like usage in Fly keyword, we

can bind a function for asynchronous

execution when the result from func1 is

available.

s = dispatch func1(a, b) “192.168.0.10”

“8888”;

register s func2;

8

exec

Executing a dispatched function from the

remote system.

The exec keyword is the back-end support

for the dispatching protocol, which

executes the dispatched function with the

parameters.

exec(string);

Sample Code

Basic Syntax

9

Goroutine Syntax

Network Application

10

 A dispatcher which accepts connection and randomly dispatch computing steps to

one of three other machines.

11

