Review for the Final

Stephen A. Edwards

Columbia University

Spring 2016

Table of Contents I

The Final

Structure of a Compiler

Scanning

Languages and Regular Expressions
NFAs
Translating REs into NFAs
Building a DFA from an NFA: Subset Construction
Parsing
Resolving Ambiguity
Rightmost and Reverse-Rightmost Derivations
Building the LR(0) Automaton
Building an SLR Parsing Table
Shift/Reduce Parsing

Table of Contents II

Types and Static Semantics
Static Semantic Analysis
Scope
Applicative vs. Normal-Order Evaluation

Runtime Environments

Storage Classes and Memory Layout
The Stack and Activation Records
In-Memory Layout Issues
The Heap
Automatic Garbage Collection
Objects and Inheritance
Exceptions

Table of Contents III

Code Generation
Intermediate Representations
Optimization and Basic Blocks
Separate Compilation and Linking

Table of Contents IV

The Lambda Calculus
Lambda Expressions
Beta-reduction
Alpha-conversion
Reduction Order
Normal Form
The Y Combinator

Logic Programming in Prolog
Prolog Execution
The Prolog Environment
Unification
The Searching Algorithm
Prolog as an Imperative Language

The Final

75 minutes
Closed book
One double-sided sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game, including things from before the midterm
Little, if any, programming
Details of O'Caml/C/C++/Java syntax not required
Broad knowledge of languages discussed

Compiling a Simple Program

```
int gcd(int a, int b)
{
    while (a != b) {
        if (a>b) a -= b;
        else b -= a;
    }
    return a;
}
```


What the Compiler Sees

```
int gcd(int a, int b)
{
    while (a != b) {
        if (a>b) a -= b;
        else b -= a;
        }
        return a;
}
```

 $\mathrm{n} \quad \mathrm{t}$ sp b) nl \{ nl sp sp w h i $\quad \mathrm{l}$ e sp ($\mathrm{a} \operatorname{sp} \quad!=\mathrm{sp} \mathrm{b}$) sp \{nl sp sp sp sp i $f \mathrm{sp} \quad(\mathrm{a} s p>\mathrm{sp} \mathrm{b}) \mathrm{sp} a \mathrm{sp}-\quad=\mathrm{sp} \mathrm{b}$; nl sp sp sp sp e l s e sp b sp - $=\mathrm{sp}$ $a \quad$; nl sp sp $\} n l \operatorname{sp} s p r$ e $t \quad u \quad r \quad n \quad s p$ a ; nl \} nl

Text file is a sequence of characters

Lexical Analysis Gives Tokens

```
int gcd(int a, int b)
{
        while (a != b) {
        if (a>b) a -= b;
        else b -= a;
        }
        return a;
}
```

int	gcd		(a	,	int		b)	\{ while			(a	
! $=$	b)		if	(a	>	b	$)$	a	-=	b	;		lse
b	-=	a	;	\}	ret	urn	a	:	\}						

A stream of tokens. Whitespace, comments removed.

Parsing Gives an Abstract Syntax Tree

Semantic Analysis Resolves Symbols and Checks

 Types

Translation into 3-Address Code

```
L0: sne $1, a, b
    seq $0,$1, 0
    btrue $0, L1 # while (a != b)
    sl $3, b, a
    seq $2, $3, 0
    btrue $2, L4 # if (a < b)
    sub a, a, b # a -= b
    jmp L5
L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a
```

int $\operatorname{gcd}($ int a, int $b)$
\{
while ($a \quad!=b$) \{
if ($a>b$) $a-=b$;
else b-= a;
\}
return $a ;$
\}

Idealized assembly language w/ infinite registers

Generation of 80386 Assembly


```
gcd: pushl %ebp # Save BP
    movl %esp,%ebp
    movl 8(%ebp),%eax # Load a from stack
    movl 12(%ebp),%edx # Load b from stack
.L8: cmpl %edx,%eax
    je .L3 # while (a != b)
    jle .L5 # if (a < b)
    subl %edx,%eax # a -= b
    jmp .L8
.L5: subl %eax,%edx # b -= a
    jmp .L8
.L3: leave # Restore SP, BP
    ret
```


Describing Tokens

Alphabet: A finite set of symbols
Examples: $\{0,1$ \}, $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}\}$, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: ϵ (the empty string), Stephen, $\alpha \beta \gamma$
Language: A set of strings over an alphabet
Examples: \varnothing (the empty language), $\{1,11,111,1111\}$, all English words, strings that start with a letter followed by any sequence of letters and digits

Operations on Languages

Let $L=\{\epsilon$, wo $\}, M=\{$ man, men $\}$
Concatenation: Strings from one followed by the other
$L M=\{$ man, men, woman, women $\}$
Union: All strings from each language
$L \cup M=\{\epsilon$, wo, man, men $\}$
Kleene Closure: Zero or more concatenations
$M^{*}=\{\epsilon\} \cup M \cup M M \cup M M M \cdots=$
$\{\varepsilon$, man, men, manman, manmen, menman, menmen, manmanman, manmanmen, manmenman, ...\}

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ϵ is a regular expression that denotes $\{\epsilon\}$
2. If $a \in \Sigma, a$ is an RE that denotes $\{a\}$
3. If r and s denote languages $L(r)$ and $L(s)$,

- $(r) \mid(s)$ denotes $L(r) \cup L(s)$
- (r)(s) denotes $\{t u: t \in L(r), u \in L(s)\}$
- $(r)^{*}$ denotes $\cup_{i=0}^{\infty} L^{i}\left(L^{0}=\{\epsilon\}\right.$ and $\left.L^{i}=L L^{i-1}\right)$

Nondeterministic Finite Automata

1. Set of states
"All strings containing an even number of 0's and 1 's"

2. Set of input symbols $\Sigma:\{0,1\}$
3. Transition function $\sigma: S \times \Sigma_{\epsilon} \rightarrow 2^{S}$

state	ϵ	0	1
A	\varnothing	$\{B\}$	$\{C\}$
B	\varnothing	$\{A\}$	$\{D\}$
C	\varnothing	$\{D\}$	$\{A\}$
D	\varnothing	$\{C\}$	$\{B\}$

4. Start state s_{0} :

A
5. Set of accepting states
$F:\{A\}$

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start state to an accepting state that "spells out" x.

Show that the string "010010" is accepted.

Translating REs into NFAs

Translating REs into NFAs

Example: Translate $(a \mid b)^{*} a b b$ into an NFA. Answer:

Show that the string " $a a b b$ " is accepted. Answer:

$$
\rightarrow(0) \xrightarrow{\epsilon}(1) \xrightarrow{\epsilon}(3) \xrightarrow{\epsilon}(6) \xrightarrow{\epsilon}(8) \xrightarrow{b}(10)
$$

Simulating NFAs

Problem: you must follow the "right" arcs to show that a string is accepted. How do you know which arc is right?
Solution: follow them all and sort it out later.
"Two-stack" NFA simulation algorithm:

1. Initial states: the ϵ-closure of the start state
2. For each character c,

- New states: follow all transitions labeled c
- Form the ϵ-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: •aabb, Start

Simulating an NFA: $a \cdot a b b$

Simulating an NFA: $a a \cdot b b$

Simulating an NFA: $a a b \cdot b$

Simulating an NFA: aabbr, Done

Deterministic Finite Automata

Restricted form of NFAs:

- No state has a transition on ϵ
- For each state s and symbol a, there is at most one edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current state. Accept if you end up on an accepting state. Reject if you end on a non-accepting state or if there is no transition from the current state for the next symbol.

Deterministic Finite Automata

```
{
    type token = ELSE | ELSEIF
}
rule token =
    parse "else" { ELSE }
        | "elseif" { ELSEIF }
```


Deterministic Finite Automata

\{ type token = IF | ID of string | NUM of string \} rule token $=$
parse "if"

Building a DFA from an NFA

Subset construction algorithm
Simulate the NFA for all possible inputs and track the states that appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Subset construction for $(a \mid b)^{*} a b b$

Result of subset construction for $(a \mid b)^{*} a b b$

Is this minimal?

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

$$
3-4 * 2+5
$$

with the grammar

Operator Precedence

Defines how "sticky" an operator is.

$$
1 * 2+3 * 4
$$

* at higher precedence than +:

$$
(1 * 2)+(3 * 4)
$$

+ at higher precedence than *:
$1 *(2+3) * 4$

Associativity

Whether to evaluate left-to-right or right-to-left Most operators are left-associative

Fixing Ambiguous Grammars

A grammar specification:

```
expr :
    expr PLUS expr
    expr MINUS expr
    expr TIMES expr
    expr DIVIDE expr
    NUMBER
```

Ambiguous: no precedence or associativity.
Ocamlyacc's complaint: "16 shift/reduce conflicts."

Assigning Precedence Levels

Split into multiple rules, one per level

```
expr : expr PLUS expr
    expr MINUS expr
    term
term : term TIMES term
        | term DIVIDE term
        atom
atom : NUMBER
```

Still ambiguous: associativity not defined
Ocamlyacc's complaint: "8 shift/reduce conflicts."

Assigning Associativity

Make one side the next level of precedence

```
expr : expr PLUS term
    | expr MINUS term
    term
term : term TIMES atom
        term DIVIDE atom
        atom
atom : NUMBER
```

This is left-associative.
No shift/reduce conflicts.

Rightmost Derivation of Id * Id + Id

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} * t$
$4: t \rightarrow$ Id

At each step, expand the rightmost nonterminal.

nonterminal

"handle": The right side of a production
Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambigious.

Rightmost Derivation: What to Expand

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} * t$
$4: t \rightarrow \mathbf{I d}$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

Expand here Terminals only

Reverse Rightmost Derivation

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+(t) \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

Shift/Reduce Parsing Using an Oracle

$$
\begin{aligned}
& 1: e \rightarrow t+e \\
& 2: e \rightarrow t \\
& 3: t \rightarrow \mathbf{I d} * t \\
& 4: t \rightarrow \mathbf{I d}
\end{aligned}
$$

$$
\begin{gathered}
e \\
t+e \\
t+t \\
t+\mathbf{I d} \\
\text { Id } * t)+\mathbf{I d} \\
\text { Id } * \text { (Id) }+\mathbf{I d}
\end{gathered}
$$

Handle Hunting

Right Sentential Form: any step in a rightmost derivation Handle: in a sentential form, a RHS of a rule that, when rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against them? Usually infinite in number, but let's try anyway.

The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a handle in a right-sentential form.

$$
\begin{aligned}
& \mathbf{I d} * \mathbf{I d} * \cdots * \mathbf{I d} * t) \cdots \\
& \mathbf{I d} * \mathbf{I d} * \cdots * \mathbf{I d} \cdots \\
& t+t+\cdots+t+e \\
& t+t+\cdots+t+\mathbf{I d} \\
& t+t+\cdots+t+\mathbf{I d} * \mathbf{I d} * \cdots * \mathbf{I d} * t \\
& t+t+\cdots+t
\end{aligned}
$$

Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

Building the Initial State of the LR(0) Automaton

$$
\begin{aligned}
& e^{\prime} \rightarrow \cdot e \\
& e \rightarrow \cdot t+e \\
& e \rightarrow \cdot t
\end{aligned}
$$

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

There are two choices for what an e may expand to: $t+e$ and t. So when $e^{\prime} \rightarrow \cdot e, e \rightarrow \cdot t+e$ and $e \rightarrow \cdot t$ are also true, i.e., it must start with a string expanded from t.

Building the Initial State of the LR(0) Automaton

$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$
Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from e. We write this condition " e ' $\rightarrow \cdot e$ "

There are two choices for what an e may expand to: $t+e$ and t. So when $e^{\prime} \rightarrow \cdot e, e \rightarrow \cdot t+e$ and $e \rightarrow \cdot t$ are also true, i.e., it must start with a string expanded from t.
Similarly, t must be either Id $* t$ or Id, so $t \rightarrow \cdot \mathbf{I d} * t$ and $t \rightarrow$.Id.

Building the LR(0) Automaton

The first state suggests a viable prefix can start as any string derived from e, any string derived from t, or Id.

$$
\begin{aligned}
e^{\prime} & \rightarrow \cdot e \\
e & \rightarrow \cdot t+e \\
\mathbf{S 0}: & e \rightarrow \cdot t \\
t & \rightarrow \cdot \mathbf{l d} * t \\
t & \rightarrow \cdot \mathbf{l d}
\end{aligned}
$$

Buil, ,ding the $\operatorname{LR}(0)$ Automaton

a string derived from

"Just passed a prefix that ended in an Id"

The first state suggests a viable prefix can start as any string derived from e, any string derived from t, or Id.

The items for these three states come from advancing the - across each thing, then performing the closure operation (vacuous here).

Building the LR(0) Automaton

Building the LR(0) Automaton

Building the LR(0) Automaton

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
	dd	+	$*$	$\$$		t	
0	$\mathbf{s} 1$				7	2	

From S0, shift an Id and go to S1; or cross a t and go to S 2 ; or cross an e and go to $\mathrm{S7}$.

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
		Id	+	$*$	$\$$	e	

From S1, shift a * and go to S3; or, if the next input could follow a t, reduce by rule 4. According to rule 1 , + could follow t; from rule $2, \$$ could.

Converting the LR(0) Automaton to an SLR Parsing Table

State		Action				Goto	
		Id	+	$*$	$\$$		

From S2, shift a + and go to S4; or, if the next input could follow an e (only the end-of-input \$), reduce by rule 2 .

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1			s3	r4		
2		s4				
3	s1					5

From S3, shift an Id and go to S1; or cross a t and go to S5.

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2

From S4, shift an Id and go to S1; or cross an e or a t.

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		

From S5, reduce using rule 3 if the next symbol could follow a t (again, + and \$).

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		

From S6, reduce using rule 1 if the next symbol could follow an e (\$ only).

Converting the LR(0) Automaton to an SLR Parsing Table

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		
7				\checkmark		
If, in S7, we just crossed an e, accept if we are at the end of the input.						

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

State	Action					Goto	
		Id	+	$*$	$\$$		

0	Id $* \mathbf{I d}+\mathbf{I d} \$ \quad$ Shift, goto 1

Look at the state on top of the stack and the next input token.

Find the action (shift, reduce, or error) in the table.

In this case, shift the token onto the stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow \mathbf{I d}$

State	Action				Goto	
	Id	+	*	\$	e	t
0	s1				7	2
1		r4	s3	r4		
2		s4		r2		
3	s1					5
4	s1				6	2
5		r3		r3		
6				r1		
7				\checkmark		

	0	Id $*$ Id $+\mathbf{I d} \$$	Shift, goto 1
0	Id		

Here, the state is 1 , the next symbol is $*$, so shift and mark it with state 3 .

Shift/Reduce Parsing with an SLR Table

Stack Input Action
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I} \mathbf{d} *$
$4: t \rightarrow \mathbf{I d}$

State	Action					Goto	
		Id	+	$*$	$\$$	e	

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{l d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
$0 \begin{array}{cc}\text { Id } \\ 1 & * \\ 3\end{array}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4

Here, the state is 1 , the next symbol is + . The table says reduce using rule 4.

Shift/Reduce Parsing with an SLR Table

Stack Input

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{I d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
$0 \begin{gathered}\text { Id } \\ 1\end{gathered}{ }_{3}^{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
$0 \begin{gathered}\text { Id } \\ 1\end{gathered}$	+ Id \$	

Remove the RHS of the rule (here, just Id), observe the state on the top of the stack, and consult the "goto" portion of the table.

Shift/Reduce Parsing with an SLR Table

Stack Input

0	$\mathbf{I d} * \mathbf{I d}+\mathbf{l d}$ \$	Shift, goto 1
$0 \stackrel{\text { Id }}{1}$	* Id + Id \$	Shift, goto 3
0 ($\begin{array}{r}\text { Id } \\ 1\end{array}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
$\begin{array}{cccc} & \text { Id } & * & t \\ 1 & 3 & 5 \end{array}$	+ Id \$	Reduce 3

Here, we push a t with state 5 . This effectively "backs up" the $\operatorname{LR}(0)$ automaton and runs it over the newly added nonterminal.

In state 5 with an upcoming +, the action is "reduce 3."

Shift/Reduce Parsing with an SLR Table

Stack Input

0	Id * Id + Id \$	Shift, goto 1
$0 \stackrel{\text { ld }}{1}$	* Id + Id \$	Shift, goto 3
$0 \underset{1}{\text { Id }} \stackrel{*}{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
0Id 1 3 $\frac{t}{t}$	+ Id \$	Reduce 3
$0 \frac{t}{2}$	+ Id \$	Shift, goto 4

Action

Shift, goto 4
$1: e \rightarrow t+e$
$2: e \rightarrow t$
$3: t \rightarrow \mathbf{I d} * t$
$4: t \rightarrow$ Id

State	Action					Goto	
		Id	+	$*$	$\$$	e	

This time, we strip off the RHS for rule 3 , $\mathbf{I d} * t$, exposing state 0 , so we push a t with state 2.

Shift/Reduce Parsing with an SLR Table

Stack
Input

0	Id * Id + Id \$	Shift, goto 1
$0 \stackrel{\text { ld }}{1}$	* Id + Id \$	Shift, goto 3
$0 \underset{1}{\text { ld }} \stackrel{*}{*}$	Id + Id \$	Shift, goto 1
	+ Id \$	Reduce 4
0Od 1	+ Id \$	Reduce 3
$0 \frac{t}{2}$	+ Id \$	Shift, goto 4
0 t $\stackrel{+}{4}$	Id \$	Shift, goto 1
	\$	Reduce 4
0 t + 2 4	\$	Reduce 2
0 t	\$	Reduce 1
$0 \frac{e}{7}$	\$	Accept

Types

A restriction on the possible interpretations of a segment of memory or other program construct.
Two uses:

Safety: avoids data being treated as something it isn't

Optimization: eliminates certain runtime decisions

Types of Types

Type
Basic

Examples

Machine words, floating-point numbers, addresses/pointers

Aggregate Arrays, structs, classes
Function Function pointers, lambdas

Basic Types

Groups of data the processor is designed to operate on.
On an ARM processor,
Type
Width (bits)

Unsigned/two's-complement binary
Byte
Halfword
8
Word 16 32

IEEE 754 Floating Point
Single-Precision scalars \& vectors
32, 64, .., 256
Double-Precision scalars \& vectors
64, 128, 192, 256

Derived types

Array: a list of objects of the same type, often fixed-length
Record: a collection of named fields, often of different types
Pointer/References: a reference to another object
Function: a reference to a block of code

C's Declarations and Declarators

Declaration: list of specifiers followed by a comma-separated list of declarators.

Declarator's notation matches that of an expression: use it to return the basic type.
Largely regarded as the worst syntactic aspect of C: both pre- (pointers) and post-fix operators (arrays, functions).

Structs

Structs are the precursors of objects:
Group and restrict what can be stored in an object, but not what operations they permit.

Can fake object-oriented programming:

```
struct poly { ... };
struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);
```


Unions: Variant Records

A struct holds all of its fields at once. A union holds only one of its fields at any time (the last written).

```
union token {
    int i;
    float f;
    char *string;
};
union token t;
t.i = 10;
t.f=3.14159; /* overwrite t.i */
char *s = t.string; /* return gibberish */
```


Applications of Variant Records

A primitive form of polymorphism:

```
struct poly {
    int }x,y\mathrm{ ;
    int type;
    union { int radius;
        int size;
        float angle; } d;
};
```

If poly.type == CIRCLE, use poly.d.radius.
If poly.type == SQUARE, use poly.d.size.
If poly.type == LINE, use poly.d.angle.

Name vs. Structural Equivalence

```
struct f {
    int x, y;
} foo = { 0, 1 };
struct b {
    int x, y;
} bar;
bar = foo;
```

Is this legal in C? Should it be?

Type Expressions

C's declarators are unusual: they always specify a name along with its type.
Languages more often have type expressions: a grammar for expressing a type.
Type expressions appear in three places in C :

```
(int *) a /* Type casts */
sizeof(float [10]) /* Argument of sizeof() */
int f(int, char *, int (*)(int)) /* Function argument types */
```


Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

```
if i 3 "This"
#a1123
/* valid Java tokens */
/* not a token */
```

Syntactic analysis: Makes sure tokens appear in correct order

```
for ( i = 1 ; i < 5 ; i++ ) 3 + "foo"; /* valid Java syntax */
for break
    /* invalid syntax */
```

Semantic analysis: Makes sure program is consistent

```
int v = 42 + 13; /* valid in Java (if v is new) */
return f+f(3); /* invalid */
```


What To Check

Examples from Java:
Verify names are defined and are of the right type.

```
int i = 5;
int a = z; /* Error: cannot find symbol */
int b = i[3]; /* Error: array required, but int found */
```

Verify the type of each expression is consistent.

```
int j = i + 53;
int k = 3 + "hello"; /* Error: incompatible types */
int l = k(42); /* Error: k is not a method */
if ("Hello") return 5; /* Error: incompatible types */
String s = "Hello";
int m = s;
/* Error: incompatible types */
```


How To Check: Depth-first AST Walk

Checking function: environment \rightarrow node \rightarrow type

check(-) check(1) $=$ int check(5) $=$ int Success: int - int = int

check(+)
check(1) $=$ int
check("Hello") = string
FAIL: Can't add int and string

Ask yourself: at each kind of node, what must be true about the nodes below it? What is the type of the node?

How To Check: Symbols

Checking function: environment \rightarrow node \rightarrow type

$$
\begin{aligned}
& \text { check(+) } \\
& \begin{array}{l}
\operatorname{check}(1)=\text { int } \\
\operatorname{check}(a)=\text { int } \\
\text { Success: int + int = int }
\end{array}
\end{aligned}
$$

The key operation: determining the type of a symbol when it is encountered.

The environment provides a "symbol table" that holds information about each in-scope symbol.

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is declared and ends at the end of its block.

From the CLRM, "The scope of an identifier declared at the head of a block begins at the end of its declarator, and persists to the end of the block."

```
void foo()
{
    int x;
```


Hiding a Definition

Nested scopes can hide earlier definitions, giving a hole.

From the CLRM, "If an identifier is explicitly declared at the head of a block, including the block constituting a function, any declaration of the identifier outside the block is suspended until the end of
 the block."

Static Scoping in Java

```
public void example() {
    // x, y, z not visible
    int x;
    // x visible
    for ( int y=1 ; y< 10 ; y++ ) {
        // x, y visible
        int z;
        // x, y, z visible
    }
    // x visible
}
```


Basic Static Scope in O'Caml

A name is bound after the "in" clause of a "let." If the name is re-bound, the binding takes effect after the "in."

Returns the pair $(12,8)$:
let $\mathrm{x}=8$ in
(let $\mathrm{x}=\mathrm{x}+2$ in

$$
x+2),
$$

Let Rec in O'Caml

The "rec" keyword makes a name visible to its definition. This only makes sense for functions.

```
let rec fib i =
    if i < 1 then 1 else
        fib (i-1) + fib (i-2)
in
    fib 5
```

(* Nonsensical *)
let $\mathrm{rec} \mathrm{x}=\mathrm{x}+3$ in

Let...and in O'Caml

$$
\begin{aligned}
& \text { let } x=8 \\
& \text { and } y=9 \text { in }
\end{aligned}
$$

Let...and lets you bind multiple names at once.
Definitions are not mutually visible unless marked "rec."

```
let rec fac n =
    if n < 2 then
        1
    else
        n * fac1 n
and fac1 n = fac (n - 1)
in
fac 5
```


Nesting Function Definitions

let articles words =
let report $w=$
let count = List.length (List.filter ((=) w) words)
in w ^ ": " ^
string_of_int count
in String.concat ", "
(List.map report ["a"; "the"])

in articles

["the"; "plt"; "class"; "is"; "a"; "pain"; "in"; "the"; "butt"]
let count words $w=$ List. length (List.filter ((=) w) words) in
let report words $w=w$ ^ ": " ^ string_of_int (count words w) in
let articles words =
String.concat ", "
(List.map (report words) ["a"; "the"]) in
articles

```
    ["the"; "plt"; "class"; "is";
        "a"; "pain"; "in";
        "the"; "butt"]
```

Produces "a: 1, the: 2"

Applicative- and Normal-Order Evaluation

```
int p(int i) {
        printf("%d ", i);
        return i;
}
void q(int a, int b, int c)
{
    int total = a;
    printf("%d ", b);
    total += c;
}
q( p(1), 2, p(3) );
```

What does this print?

Applicative- vs. and Normal-Order

Most languages use applicative order.
Macro-like languages often use normal order.

```
#define p(x) (printf("%d ",x), x)
#define q(a,b,c) total = (a), \
    printf("%d ", (b)),
    total += (c)
q( p(1), 2, p(3) );
```

Prints 123.
Some functional languages also use normal order evaluation to avoid doing work. "Lazy Evaluation"

Storage Classes and Memory Layout

Static Objects

Advantages

Zero-cost memory
management
Often faster access (address a constant)

No out-of-memory danger

Examples

Static class variable
Code for hello method
String constant "Hello"
Information about the Example class

Disadvantages

Size and number must be known beforehand

Wasteful if sharing is possible

Stack-Allocated Objects

Natural for supporting recursion.

Idea: some objects persist from when a procedure is called to when it returns.

Naturally implemented with a stack: linear array of memory that grows and shrinks at only one boundary.
Each invocation of a procedure gets its own frame (activation record) where it stores its own local variables and bookkeeping information.

An Activation Record: The State Before Calling bar

Recursive Fibonacci

(Real C)

```
    if ( }n<2\mathrm{ )
            return 1;
    else
    return
        fib(n-1)
            +
                fib(n-2);
}
```

(Assembly-like C)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)


```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

int fib(int n) \{ int tmp1, tmp2, tmp3; tmp1 = n < 2; if (!tmp1) goto L1; return 1;
L1: tmp1 = n - 1;
tmp2 = fib(tmp1);
L2: tmp1 = n - 2; tmp3 $=$ fib(tmp1);
L3: tmp1 = tmp2 + tmp3; return tmp1;
$\mathrm{n}=3$
return address
last frame pointer ${ }^{-}$ tmp1 $=2$
$\operatorname{tmp} 2=$
tmp3 $=$
$\mathrm{n}=2$
return address last frame pointer $\operatorname{tmp1}=1$
$\operatorname{tmp} 2=$
$\operatorname{tmp} 3=$
$\mathrm{n}=1$
FP \rightarrow return address last frame pointer• tmp1 = 1 $\operatorname{tmp} 2=$
tmp3 $=$

Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

int fib(int n) \{ int tmp1, tmp2, tmp3; tmp1 = n < 2; if (!tmp1) goto L1; return 1;
L1: tmp1 = n - 1;
tmp2 = fib(tmp1);
L2: tmp1 = n - 2; tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3; return tmp1;

Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Executing fib(3)

```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```


Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

Allocating Variable-Sized Arrays

Variable-sized local arrays aren't as easy.

void foo(int n)	return address	$\leftarrow \mathrm{FP}$
\{	a	
int $a ;$ int $b[n]$.	$\mathrm{b}[\mathrm{n}-1]$	
int c;	!	
$\text { \} }$	b[0]	
	c	$\leftarrow \mathrm{FP}-$?

Doesn't work: generated code expects a fixed offset for c. Even worse for multi-dimensional arrays.

Allocating Variable-Sized Arrays

As always:
add a level of indirection

```
void foo(int n)
{
    int a;
        int b[n];
        int c;
    }
```


Variables remain constant offset from frame pointer.

Nesting Function Definitions

let articles words =
let report $w=$
let count = List.length (List.filter ((=) w) words)
in w ^ ": " ^
string_of_int count
in String.concat ", "
(List.map report ["a"; "the"])

in articles

["the"; "plt"; "class"; "is"; "a"; "pain"; "in"; "the"; "butt"]
let count words $w=$ List. length (List.filter ((=) w) words) in
let report words $w=w$ ^ ": " ^ string_of_int (count words w) in
let articles words =
String.concat ", "
(List.map (report words) ["a"; "the"]) in
articles

```
    ["the"; "plt"; "class"; "is";
        "a"; "pain"; "in";
        "the"; "butt"]
```

Produces "a: 1, the: 2"

Implementing Nested Functions with Access Links

```
let a x s=
    let b y =
        let c z = z + s in
\[
\text { let } d w=c(w+1) \text { in }
\]
        let dw=c(w+1) in
\[
d(y+1) \text { in }(* \mathrm{~b} *)
\]
        d (y+1) in (* b *)
\[
\text { let } e q=b(q+1) \text { in }
\]
        let e q=b (q+1) in
\[
\text { let } c z=z+s \text { in }
\]
\[
e(x+1)(* a *)
\]
    e(x+1)(* a *)
```

What does "a 5 42" give?

Implementing Nested Functions with Access Links

```
let a x s=
    let b y =
        let c z = z+s in
        let d w = c (w+1) in
        d (y+1) in (* b *)
        let e q=b (q+1) in
    e (x+1) (* a *)
```

What does "a 5 42" give?

Implementing Nested Functions with Access Links

```
let a x s =
    let b y =
        let c z = z+s in
        let d w = c (w+1) in
        d (y+1) in (* b *)
        let e q=b (q+1) in
    e (x+1) (* a *)
```

What does "a 5 42" give?

Implementing Nested Functions with Access Links

```
let a x s =
    let b y =
        let c z = z+s in
        let d w = c (w+1) in
        d (y+1) in (* b *)
        let e q=b (q+1) in
    e (x+1) (* a *)
```

What does "a 5 42" give?

Implementing Nested Functions with Access Links

```
let a x s=
    let b y =
        let c z = z+s in
        let d w = c (w+1) in
        d (y+1) in (% b *)
        let e q=b (q+1) in
    e(x+1)(* a *)
```

What does "a 5 42" give?

a: \begin{tabular}{l}

(access link)
$x=5$
$s=42$

e: | (access link) |
| :--- |
| $q=6$ |

b: | (access link) |
| :--- |
| $y=7$ |

d: | (access link) |
| :--- |
| w $=8$ |

c: | (access link) |
| :--- |
| $z=9$ |

\hline
\end{tabular}

Layout of Records and Unions

Modern processors have byte-addressable memory.

The IBM 360 (c. 1964) helped to popularize byte-addressable memory.

Many data types (integers, addresses, floating-point numbers) are wider than a byte.

16-bit integer:
32-bit integer: \square 3 3 2 1 0

Layout of Records and Unions

It is harder to read an

Modern memory systems read data in 32-, 64-, or 128-bit chunks:

3	2	1	0
7	6	5	4
11	10	9	8

Reading an aligned 32-bit value is fast: a single operation.

3	2	1	0
7	6	5	4
11	10	9	8

unaligned value: two reads plus shifting

SPARC and ARM prohibit unaligned accesses
MIPS has special unaligned load/store instructions
x86, 68k run more slowly with unaligned accesses

Padding

To avoid unaligned accesses, the C compiler pads the layout of unions and records.

Rules:

- Each n-byte object must start on a multiple of n bytes (no unaligned accesses).
- Any object containing an n-byte object must be of size $m n$ for some integer m (aligned even when arrayed).


```
struct padded
    char a; /* 1 byte */
    short b; /* 2 bytes */
    short c; /* 2 bytes */
};
```


Unions

A C struct has a separate space for each field; a C union shares one space among all fields


```
union twostructs {
    struct {
    char c; /* 1 byte */
        int i; /* 4 bytes */
        } a;
    struct {
        short s1; /* 2 bytes */
        short s2; /* 2 bytes */
    } b;
};
```


or

Arrays

Basic policy in C: an array is just one object after another in memory.

```
int a[10];
```

$a[0]$	$a[0]$	$a[0]$	$a[0]$
$a[1]$	$a[1]$	$a[1]$	$a[1]$
\vdots			
$a[9]$	$a[9]$	$a[9]$	$a[9]$

This is why you need padding at the end of structs.

```
struct {
    int a;
    char c;
} b[2];
```


Arrays and Aggregate types

The largest primitive type dictates the alignment

```
struct \(\{\)
short \(a\);
short \(b ;\)
char \(c ;\)
\(\} d[4] ;\)
```


Arrays of Arrays

```
char \(a[4] ;\)
```


$a[3] \quad a[2] \quad a[1] \quad a[0]$

char $a[3][4] ;$

$a[0][3]$	$a[0][2]$	$a[0][1]$	$a[0][0]$	$a[0]$
$a[1][3]$	$a[1][2]$	$a[1][1]$	$a[1][0]$	$a[1]$
$a[2][3]$	$a[2][2]$	$a[2][1]$	$a[2][0]$	$a[2]$

Heap-Allocated Storage

Static works when you know everything beforehand and always need it.
Stack enables, but also requires, recursive behavior.
A heap is a region of memory where blocks can be allocated and deallocated in any order.
(These heaps are different than those in, e.g., heapsort)

Dynamic Storage Allocation in C

```
struct point {
    int x, y;
};
int play_with_points(int n)
{
    int i;
    struct point *points;
    points = malloc(n * sizeof(struct point));
    for ( i = 0 ; i < n ; i++ ) {
        points[i].x = random();
        points[i].y = random();
    }
    /* do something with the array */
    free(points);
}
```


Dynamic Storage Allocation

Dynamic Storage Allocation

Rules:
Each allocated block contiguous (no holes)
Blocks stay fixed once allocated
malloc()
Find an area large enough for requested block
Mark memory as allocated
free()
Mark the block as unallocated

Simple Dynamic Storage Allocation

Maintaining information about free memory
Simplest: Linked list
The algorithm for locating a suitable block
Simplest: First-fit
The algorithm for freeing an allocated block
Simplest: Coalesce adjacent free blocks

Simple Dynamic Storage Allocation

Simple Dynamic Storage Allocation

$\operatorname{malloc}(\square)$

Simple Dynamic Storage Allocation

Simple Dynamic Storage Allocation

Simple Dynamic Storage Allocation

Fragmentation

$\operatorname{malloc}(\square)$ seven times give

free() four times gives

malloc (\square)?
Need more memory; can't use fragmented memory.

Hockey smile

Fragmentation and Handles

Standard CS solution: Add another layer of indirection. Always reference memory through "handles."

The original Macintosh did this to save memory.

Fragmentation and Handles

Standard CS solution: Add another layer of indirection. Always reference memory through "handles."

The original Macintosh did this to save memory.

Automatic Garbage Collection

Entrust the runtime system with freeing heap objects Now common: Java, C\#, Javascript, Python, Ruby, OCaml and most functional languages

Advantages

Much easier for the programmer

Greatly improves reliability: no memory leaks, double-freeing, or other memory management errors

Disadvantages

Slower, sometimes unpredictably so

May consume more memory

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

```
let a = (42, 17) in
let b = [a;a] in
|0
let c = (1,2)::b in
b
```


Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } \mathrm{a}=(42,17) \text { in } \\
& \text { let } \mathrm{b}=[\mathrm{a} ; \mathrm{a}] \text { in } \\
& \text { let } \mathrm{c}=(1,2): \mathrm{b} \text { in } \\
& \mathrm{b}
\end{aligned}
$$

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } \mathrm{a}=(42,17) \text { in } \\
& \text { let } \mathrm{b}=[\mathrm{a} ; \mathrm{a}] \text { in } \\
& \text { let } \mathrm{c}=(1,2): \mathrm{b} \text { in } \\
& \mathrm{b}
\end{aligned}
$$

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } \mathrm{a}=(42,17) \text { in } \\
& \text { let } \mathrm{b}=[\mathrm{a} ; \mathrm{a}] \text { in } \\
& \text { let } \mathrm{c}=(1,2): \mathrm{b} \text { in } \\
& \mathrm{b}
\end{aligned}
$$

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } a=(42,17) \text { in } \\
& \text { let } b=[a ; a] \text { in } \\
& \text { let } c=(1,2):: b \text { in } \\
& b
\end{aligned}
$$

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } a=(42,17) \text { in } \\
& \text { let } b=[a ; a] \text { in } \\
& \text { let } c=(1,2):: b \text { in } \\
& b
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline 0 & 1,2 \\
\hline
\end{array}
$$

Reference Counting

What and when to free?

- Maintain count of references to each object
- Free when count reaches zero

$$
\begin{aligned}
& \text { let } \mathrm{a}=(42,17) \text { in } \\
& \text { let } \mathrm{b}=[\mathrm{a} ; \mathrm{a}] \text { in } \\
& \text { let } \mathrm{c}=(1,2): \mathrm{b} \text { in } \\
& \mathrm{b}
\end{aligned}
$$

Issues with Reference Counting

Circular structures defy reference counting:

Neither is reachable, yet both have non-zero reference counts.

High overhead (must update counts constantly), although incremental

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
- Breadth-first-search marks all reachable memory
- All unmarked items freed

$$
\begin{aligned}
& \text { let } a=(42,17) \text { in } \\
& \text { let } b=[a ; a] \text { in } \\
& \text { let } c=(1,2): b \text { in } \\
& b
\end{aligned}
$$

Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
- Breadth-first-search marks all reachable memory
- All unmarked items freed

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
- Breadth-first-search marks all reachable memory
- All unmarked items freed

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Mark-and-Sweep

What and when to free?

- Stop-the-world algorithm invoked when memory full
- Breadth-first-search marks all reachable memory
- All unmarked items freed

```
let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
```


Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses
Mark-and-compact variant also moves or copies reachable objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing everything at once

Most objects die young; generational garbage collectors segregate heap objects by age
Parallel garbage collection tricky
Real-time garbage collection tricky

Single Inheritance

Simple: Add new fields to end of the object
Fields in base class always at same offset in derived class (compiler never reorders)

Consequence: Derived classes can never remove fields

```
C++
    class Shape {
        double x, y;
    };
    class Box : Shape {
        double h, w;
    };
    class Circle : Shape {
        double r;
    };
```

```
Equivalent C
struct Shape {
    double x, y;
};
struct Box {
    double x, y;
    double h, w;
};
struct Circle {
    double x, y;
    double r;
};
```


Virtual Functions

```
class Shape {
    virtual void draw(); // Invoked by object's run-time class
}; // not its compile-time type.
class Line : public Shape {
    void draw();
}
class Arc : public Shape {
    void draw();
};
Shape *s[10];
s[0] = new Line;
s[1] = new Arc;
s[0]->draw(); // Invoke Line::draw()
s[1]->draw(); // Invoke Arc::draw()
```


Virtual Functions

Trick: add to each object a pointer to the virtual table for its type, filled with pointers to the virtual functions.
Like the objects themselves, the virtual table for each derived type begins identically.

```
struct A {
    int x;
    virtual void Foo();
    virtual void Bar();
};
struct B : A {
    int y;
    virtual void Foo();
    virtual void Baz();
};
A a1;
A a2;
B b1;
```


B's Vtbl
$\mathrm{B}:$:Foo
$\mathrm{A}:: \mathrm{Bar}$
$\mathrm{B}:: \mathrm{Baz}$
b 1
vptr
x
y

C++'s Exceptions

```
struct Except {} ex; // This struct functions as an exception
void top(void) {
    try {
        child();
    }/catch (Except e) { // throw sends control here
        printf'("pops\n");
} }
void child() {
    child2();
}
void child2() {
    throw ex; // Pass control up to the catch block
}
```


C's setjmp/longjmp: Idiosyncratic Exceptions

Implementing Exceptions

One way: maintain a stack of exception handlers

```
try {
    child();
} catch (Ex e) {
    foo();
}
void child() {
    child2();
}
void child2() {
    throw ex;
}
push(Ex, Handler); // Push handler on stack
ll}\begin{array}{ll}{\mathrm{ child(); }}&{\mathrm{ pop(); Normal termination }}\\{\mathrm{ goto Exit; }}&{// Jump over "catch" }
```

Incurs overhead, even when no exceptions thrown

Implementing Exceptions with Tables

Q: When an exception is thrown, where was the last try?
A: Consult a table: relevant handler or "pop" for every PC

Stack-Based IR: Java Bytecode

```
int \(\operatorname{gcd}(\) int \(a\), int \(b)\) \{
    while ( \(a \quad!=b\) ) \{
        if \((a>b)\)
                \(a-=b ;\)
        else
            \(b\)-= \(a ;\)
    \}
    return \(a ;\)
\}
```


Stack-Based IRs

Advantages:

- Trivial translation of expressions
- Trivial interpreters

- No problems with exhausting registers
- Often compact

Disadvantages:

- Semantic gap between stack operations and modern register machines
- Hard to see what communicates with what
- Difficult representation for optimization

Register-Based IR: Mach SUIF

```
int gcd(int a, int b) {
    while (a != b) {
        if (a > b)
            a -= b;
        else
            b -= a;
    }
    return a;
}
```

gcd:
gcd._gcdTmp0:
sne \$vr1.s32 <- gcd.a,gcd.b
seq \$vr0.s32 <- \$vr1.s32,0
btrue $\$ v r 0 . s 32$, gcd._gcdTmp1 // if!(a!= b) goto Tmp1
sl \$vr3.s32 <- gcd.b,gcd.a
seq \$vr2.s32 <- \$vr3.s32,0
btrue \$vr2.s32,gcd._gcdTmp4 // if! (a<b) goto Tmp4
mrk 2, 4 // Line number 4
sub \$vr4.s32 <- gcd.a,gcd.b
mov gcd._gcdTmp2 <- \$vr4.s32
mov gcd.a <- gcd._gcdTmp2 // a = a-b
jmp gcd._gcdTmp5
gcd._gcdTmp4:
mrk 2, 6
sub \$vr5.s32 <- gcd.b,gcd.a
mov gcd._gcdTmp3 <- \$vr5.s32
mov gcd.b <- gcd._gcdTmp3 // b = b-a
gcd._gcdTmp5:
jmp gcd._gcdTmp0
gcd._gcdTmp1:
mrk 2, 8
ret gcd.a // Return a

Register-Based IRs

Most common type of IR
Advantages:

- Better representation for register machines
- Dataflow is usually clear

Disadvantages:

- Slightly harder to synthesize from code
- Less compact
- More complicated to interpret

Optimization In Action

GCC on SPARC

```
int gcd(int a, int b) {
    while (a != b) {
        if (a<b) b -= a;
        else a -= b;
    }
    return a;
}
```


GCC -O7 on SPARC

```
gcd: cmp %o0, %o1
```

gcd: cmp %o0, %o1
nop
nop
.LL9: bge,a .LL2
.LL9: bge,a .LL2
sub %o0, %o1, %o0
sub %o0, %o1, %o0
sub %o1, %o0, %o1
sub %o1, %o0, %o1
.LL2: cmp %o0, %o1
.LL2: cmp %o0, %o1
bne .LL9
bne .LL9
nop
nop
.LL8: retl
.LL8: retl
nop

```
    nop
```


Typical Optimizations

- Folding constant expressions $1+3 \rightarrow 4$
- Removing dead code if (0) $\{\ldots\} \rightarrow$ nothing
- Moving variables from memory to registers

```
ld [%fp+68], %i1
sub %i0, %i1, %i0 -> sub %o1, %o0, %o1
st %i0, [%fp+72]
```

- Removing unnecessary data movement
- Filling branch delay slots (Pipelined RISC processors)
- Common subexpression elimination

Machine-Dependent vs. -Independent Optimization

No matter what the machine is, folding constants and eliminating dead code is always a good idea.

```
a = c + 5 + 3;
if (0 + 3) {
    b = c + 8;
                                    -> b = a = c + 8;
}
```

However, many optimizations are processor-specific:

- Register allocation depends on how many registers the machine has
- Not all processors have branch delay slots to fill
- Each processor's pipeline is a little different

Basic Blocks

```
int gcd(int a, int b) {
    while (a !=b) {
        if (a<b)b-=a;
        else a -= b;
    }
    return a;
}
```


The statements in a basic block all run if the first one does.
Starts with a statement following a conditional branch or is a branch target.
Usually ends with a control-transfer statement.

Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.
A:
sne $\mathrm{t}, \mathrm{a}, \mathrm{b}$ bz E, t
slt t, a, b bnz B, t
sub b, b, a jmp C

B:
sub a, a, b
C:
jmp A
E:

ret a

Separate Compilation and Linking

Linking

Goal of the linker is to combine the disparate pieces of the program into a coherent whole,
file1.c:
\#include <stdio.h> char a[]$=$ "Hello"; extern void bar();
int main() \{
bar();
\} \}
void baz(char *s) \{ printf("\%s", s);
\}
.
file2.c:
\#include <stdio.h> extern char a[] ;
static char b[6];
void bar() \{ strcpy(b, a); baz(b);

```
    /* ... */
}
char *
strcpy(char *d,
        char *s)
{
    /* ... */
}
```

libc.a:
int
printf(char *s, ...)
\{

Linking

Goal of the linker is to combine the disparate pieces of the program into a coherent whole,
file1.c:
\#include <stdio.h>
char a[$]=$ "Hello"; extern void bar();

libc.a:
int
printf(char *s, ...)
$\{$
/* ... */
\}
char *
strcpy (char *d, char *s)
\{ /* ... */
\}

Linking

file1.o

file2.0
char b[6]
bar()

Linking

.text
Code of program
.data
Initialized data
.bss
Uninitialized data "Block Started by Symbol"

Object Files

Relocatable: Many need to be pasted together. Final in-memory address of code not known when program is compiled
Object files contain

- imported symbols (unresolved "external" symbols)
- relocation information (what needs to change)
- exported symbols (what other files may refer to)

Object Files

Object Files

file1.c:
\#include <stdio.h> char $a[]=$ "Hello"; extern void bar();
int main() \{

```
    bar();
```

\}
void $b a z($ char $* s)$ \{
printf("\%s", s);
\}

\# objdump	-x file1.o				
Sections:					
Idx Name	Size VMA	LMA	Offset	Algn	
0	.text	038	0	0	034
$2 * * 2$					
1	.data	008	0	0	070
2	.bss	000	0	0	078
3	.rodata	008	0	0	078

SYMBOL TABLE:

0000 g 0	. data	006 a
0000 g F	.text	014 main
0000	*UND*	000 bar
0014 g F	.text	024 baz
0000	*UND*	000 printf

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0004 R_SPARC_WDISP30 bar
001c R_SPARC_HI22 .rodata
0020 R_SPARC_L010 .rodata
0028 R_SPARC_WDISP30 printf

Object Files

file1.c:
\#include <stdio.h> char $a[]=$ "Hello"; extern void bar();
int main() \{ bar();
\}
void baz(char *s) \{ printf("\%s", s);

```
# objdump -d file1.o
0000 <main>:
    0: 9d e3 bf 90 save %sp, -112, %sp
    4: 40 00 00 00 call 4 <main+0x4>
        4: R_SPARC_WDISP30 bar
    8: 01 00 00 00 nop
    c: 81 c7 e0 08 ret
10: 81 e8 00 00 restore
0014 <baz>:
14: 9d e3 bf 90 save %sp, -112, %sp
18: f0 27 a0 44 st %i0, [ %fp + 0x44 ]
1c: 11 00 00 00 sethi %hi(0), %o0
    1c: R_SPARC_HI22 .rodata
20: 90 12 20 00 mov %o0, %o0
    20: R_SPARC_L010 .rodata
24: d2 07 a0 44 ld [ %fp + 0x44 ], %o1
28: 40 00 00 00 call 28 <baz+0x14>
    28: R_SPARC_WDISP30 printf
2c: 01 00 00 00 nop
30: 81 c7 e0 08 ret
34: 81 e8 00 00 restore
```


Before and After Linking

```
int main() {
    bar();
}
void baz(char *s) {
    printf("%s", s);
}
```

- Combine object files
- Relocate each function's code
- Resolve previously unresolved symbols

0000 <main>:

```
    0: 9d e3 bf 90 save %sp, -112, %sp
    4: 40 00 00 00 call 4 <main+0x4>
    4: R_SPARC_WDISP30 bar
    8: 01 00 00 00 nop
    c: 81 c7 e0 08 ret
10: 81 e8 00 00 restore
```

0014 <baz>:
14: 9d e3 bf 90 save \%sp, -112 , \%sp
18: f0 27 a0 44 st \%i0, [\%fp + 0x44]
1c: 11000000 sethi \%hi(0), \%o0
1c: R_SPARC_HI22 .rodata Unresolved symbol
20: 90 12 2000 mov \%o0, \%od
24: d2 07 a0 44 ld [\%fp + 0x44], \%o1
28: 40000000 call 28 <baz+0x14>
28: R_SPARC_WDISP30 printf
2c: 01000000 nop
30: 81 c7 e0 08 ret
34: 81 e8 0000 restore

Linking Resolves Symbols

```
file1.c:
#include <stdio.h>
char a[] = "Hello";
extern void bar();
int main() {
    bar();
}
void baz(char *s) {
    printf("%s", s);
}
```

```
105f8 <main>:
105f8: 9d e3 bf 90 save %sp, -112, %sp
105fc: 40 00 00 Od call 10630 <bar>
10600: 01 00 00 00 nop
10604: 81 c7 e0 08 ret
10608: 81 e8 00 00 restore
```

1060c <baz>:
1060c: 9d e3 bf 90 save \%sp, -112, \%sp
10610: f0 27 a0 44 st \%i0, [\%fp + 0x44]
10614: 11000041 sethi \%hi(0x10400), \%o0
10618: 90122300 or \%o0, 0x300, \%00 ! "\%s"
1061c: d2 07 a0 44 ld [\%fp + 0x44], \%o1
10620: 40004062 call 207a8 ! printf
10624: 01000000 nop
10628: 81 c7 e0 08 ret
1062c: 81 e8 0000 restore
10630 <bar>:
10630: 9d e3 bf 90 save \%sp, -112, \%sp
10634: 11000082 sethi \%hi(0x20800), \%o0
10638: 901220 a8 or \%o0, 0xa8, \%o0 ! 208a8
1063c: 13000081 sethi \%hi(0x20400), \%o1
10640: 92126318 or \%o1, 0x318, \%o1 ! 20718 <a>
10644: 4000404 d call 20778 ! strcpy
10648: 01000000 nop
1064c: 11000082 sethi \%hi(0x20800), \%o0
10650: 901220 a8 or \%o0, 0xa8, \%o0 ! 208a8
10654: 7f ff ff ee call 1060c <baz>
10658: 01000000 nop
1065c: 81 c7 e0 08 ret
10660: 81 e8 0000 restore
10664: 81 c3 e0 08 retl
10668: ae 03 c0 17 add $\%$, $\% 17$, $\% 17$

Lambda Expressions

Function application written in prefix form. "Add four and five" is

$$
(+45)
$$

Evaluation: select a redex and evaluate it:

$$
\begin{aligned}
(+(* 56)(* 83)) & \rightarrow(+30(* 83)) \\
& \rightarrow(+3024) \\
& \rightarrow 54
\end{aligned}
$$

Often more than one way to proceed:

$$
\begin{aligned}
(+(* 56)(* 83)) & \rightarrow(+(* 56) 24) \\
& \rightarrow(+3024) \\
& \rightarrow 54
\end{aligned}
$$

Simon Peyton Jones, The Implementation of Functional Programming Languages, Prentice-Hall, 1987.

Function Application and Currying

Function application is written as juxtaposition:

$$
f x
$$

Every function has exactly one argument. Multiple-argument functions, e.g., +, are represented by currying, named after Haskell Brooks Curry (1900-1982). So,

$$
(+x)
$$

is the function that adds x to its argument.
Function application associates left-to-right:

$$
\begin{aligned}
(+34) & =((+3) 4) \\
& \rightarrow 7
\end{aligned}
$$

Lambda Abstraction

The only other thing in the lambda calculus is lambda abstraction: a notation for defining unnamed functions.

$$
\left(\lambda x+x_{1}\right)
$$

That function of x that adds x to 1

The Syntax of the Lambda Calculus

expr	$::=$	expr expr
	\mid	λ variable . expr
	\|	constant
	\| variable	
	\|	(expr)

Constants are numbers and built-in functions; variables are identifiers.

Beta-Reduction

Evaluation of a lambda abstraction-beta-reduction-is just substitution:

$$
\begin{aligned}
(\lambda x .+x 1) 4 & \rightarrow(+41) \\
& \rightarrow 5
\end{aligned}
$$

The argument may appear more than once

$$
\begin{aligned}
(\lambda x .+x x) 4 & \rightarrow(+44) \\
& \rightarrow 8
\end{aligned}
$$

or not at all

$$
(\lambda x .3) 5 \rightarrow 3
$$

Free and Bound Variables

$$
(\lambda x .+x y) 4
$$

Here, x is like a function argument but y is like a global variable.

Technically, x occurs bound and y occurs free in

$$
(\lambda x .+x y)
$$

However, both x and y occur free in

$$
(+x y)
$$

Beta-Reduction More Formally

$$
(\lambda x . E) F \rightarrow_{\beta} E^{\prime}
$$

where E^{\prime} is obtained from E by replacing every instance of x that appears free in E with F.
The definition of free and bound mean variables have scopes. Only the rightmost x appears free in

$$
\left(\lambda x .+\left(-x_{1}\right)\right) x 3
$$

SO

$$
\begin{aligned}
(\lambda x .(\lambda x .+(-x 1)) x 3) 9 & \rightarrow(\lambda x .+(-x 1)) 93 \\
& \rightarrow+(-91) 3 \\
& \rightarrow+83 \\
& \rightarrow 11
\end{aligned}
$$

Alpha-Conversion

One way to confuse yourself less is to do α-conversion: renaming a λ argument and its bound variables.
Formal parameters are only names: they are correct if they are consistent.

$$
\begin{aligned}
(\lambda x \cdot(\lambda x .+(-x 1)) x 3) 9 & \leftrightarrow(\lambda x \cdot(\lambda y \cdot+(-y 1)) x 3) 9 \\
& \rightarrow((\lambda y \cdot+(-y 1)) 93) \\
& \rightarrow(+(-91) 3) \\
& \rightarrow(+83) \\
& \rightarrow 11
\end{aligned}
$$

Beta-Abstraction and Eta-Conversion

Running β-reduction in reverse, leaving the "meaning" of a lambda expression unchanged, is called beta abstraction:

$$
+41 \leftarrow(\lambda x .+x 1) 4
$$

Eta-conversion is another type of conversion that leaves "meaning" unchanged:

$$
(\lambda x .+1 x) \leftrightarrow_{\eta}(+1)
$$

Formally, if F is a function in which x does not occur free,

$$
(\lambda x . F x) \leftrightarrow_{\eta} F
$$

Reduction Order

The order in which you reduce things can matter.

$$
(\lambda x \cdot \lambda y \cdot y)((\lambda z \cdot z z)(\lambda z \cdot z z))
$$

Two things can be reduced:

$$
\begin{aligned}
& (\lambda z \cdot z z)(\lambda z \cdot z z) \\
& (\lambda x \cdot \lambda y \cdot y)(\cdots)
\end{aligned}
$$

However,

$$
(\lambda z \cdot z z)(\lambda z \cdot z z) \rightarrow(\lambda z \cdot z z)(\lambda z \cdot z z)
$$

$$
(\lambda x \cdot \lambda y \cdot y)(\cdots) \rightarrow(\lambda y \cdot y)
$$

Normal Form

A lambda expression that cannot be β-reduced is in normal form. Thus,

$$
\lambda y \cdot y
$$

is the normal form of

$$
(\lambda x \cdot \lambda y \cdot y)((\lambda z \cdot z z)(\lambda z \cdot z z))
$$

Not everything has a normal form. E.g.,

$$
(\lambda z \cdot z z)(\lambda z \cdot z z)
$$

can only be reduced to itself, so it never produces an non-reducible expression.

Normal Form

Can a lambda expression have more than one normal form?

Church-Rosser Theorem I: If $E_{1} \leftrightarrow E_{2}$, then there exists an expression E such that $E_{1} \rightarrow E$ and $E_{2} \rightarrow$ E.

Corollary. No expression may have two distinct normal forms.
Proof. Assume E_{1} and E_{2} are distinct normal forms for E : $E \leftrightarrow E_{1}$ and $E \leftrightarrow E_{2}$. So $E_{1} \leftrightarrow E_{2}$ and by the Church-Rosser Theorem I, there must exist an F such that $E_{1} \rightarrow F$ and $E_{2} \rightarrow F$. However, since E_{1} and E_{2} are in normal form, $E_{1}=F=E_{2}$, a contradiction.

Normal-Order Reduction

Not all expressions have normal forms, but is there a reliable way to find the normal form if it exists?

Church-Rosser Theorem II: If $E_{1} \rightarrow E_{2}$ and E_{2} is in normal form, then there exists a normal order reduction sequence from E_{1} to E_{2}.

Normal order reduction: reduce the leftmost outermost redex.

Normal-Order Reduction

$$
((\lambda x \cdot((\lambda w \cdot \lambda z \cdot+w z) 1))((\lambda x \cdot x x)(\lambda x \cdot x x)))((\lambda y \cdot+y 1)(+2
$$

Recursion

Where is recursion in the lambda calculus?

$$
F A C=(\lambda n . I F(=n 0) 1(* n(F A C(-n 1))))
$$

This does not work: functions are unnamed in the lambda calculus. But it is possible to express recursion as a function.

$$
\begin{aligned}
F A C & =(\lambda n \ldots F A C \ldots) \\
& \leftarrow_{\beta}(\lambda f .(\lambda n \ldots \ldots f \ldots) F A C \\
& =H F A C
\end{aligned}
$$

That is, the factorial function, $F A C$, is a fixed point of the (non-recursive) function H :

$$
H=\lambda f \cdot \lambda n \cdot I F(=n 0) 1(* n(f(-n 1)))
$$

Recursion

Let's invent a function Y that computes $F A C$ from H, i.e., $F A C=Y H:$

$$
\begin{aligned}
F A C & =H F A C \\
Y H & =H(Y H)
\end{aligned}
$$

$$
\begin{aligned}
F A C 1 & =Y H 1 \\
& =H(Y H) 1 \\
& =(\lambda f . \lambda n . I F(=n 0) 1(* n(f(-n 1))))(Y H) 1 \\
& \rightarrow(\lambda n . I F(=n 0) 1(* n((Y H)(-n 1)))) 1 \\
& \rightarrow I F(=10) 1(* 1((Y H)(-11))) \\
& \rightarrow * 1(Y H 0) \\
& =* 1(H(Y H) 0) \\
& =* 1((\lambda f . \lambda n . I F(=n 0) 1(* n(f(-n 1))))(Y H) 0) \\
& \rightarrow * 1((\lambda n . I F(=n 0) 1(* n(Y H(-n 1)))) 0) \\
& \rightarrow * 1(I F(=00) 1(* 0(Y H(-01)))) \\
& \rightarrow * 11
\end{aligned}
$$

The Y Combinator

Here's the eye-popping part: Y can be a simple lambda expression.

$$
\begin{aligned}
Y & =\lambda f \cdot(\lambda x \cdot(f(x x)) \lambda x \cdot(f(x x))) \\
& =\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
\end{aligned}
$$

$$
\begin{aligned}
Y H & =(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) H \\
& \rightarrow(\lambda x \cdot H(x x))(\lambda x \cdot H(x x)) \\
& \rightarrow H((\lambda x \cdot H(x x))(\lambda x \cdot H(x x))) \\
& \leftrightarrow H((\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) H) \\
& =H(Y H)
\end{aligned}
$$

"Y: The function that takes a function f and returns $f(f(f(f(\cdots))))^{\prime \prime}$

Prolog Execution

Query
?- nerd(stephen). \rightarrow Search (Execution)
Result yes

Simple Searching

Starts with the query:
?- nerd(stephen).

Can we convince ourselves that nerd(stephen) is true given the facts we have?

```
techer(stephen).
nerd(X) :- techer( }X\mathrm{ ).
```

First says techer(stephen) is true. Not helpful.
Second says that we can conclude nerd(X) is true if we can conclude techer (X) is true. More promising.

Simple Searching

```
techer(stephen).
nerd(X) :- techer(X).
```

?- nerd(stephen).

Unifying nerd(stephen) with the head of the second rule, nerd(X), we conclude that $\mathrm{X}=$ stephen.

We're not done: for the rule to be true, we must find that all its conditions are true. $\mathrm{X}=$ stephen, so we want techer(stephen) to hold.

This is exactly the first clause in the database; we're satisfied. The query is simply true.

More Clever Searching

```
techer(stephen).
techer(todd).
nerd(X) :- techer(X).
```

?- nerd(X).
"Tell me about everybody who's provably a nerd."
As before, start with query. Rule only interesting thing.
Unifying nerd(X) with nerd (X) is vacuously true, so we need to establish techer (X).

Unifying techer(X) with techer(stephen) succeeds, setting $\mathrm{X}=$ stephen, but we're not done yet.

Unifying techer (X) with techer (todd) also succeeds, setting $\mathrm{X}=$ todd, but we're still not done.

Unifying techer(X) with nerd(X) fails, returning no.

The Prolog Environment

Database consists of Horn clauses. ("If a is true and b is true and ... and y is true then z is true".)

Each clause consists of terms, which may be constants, variables, or structures.

Constants: foo my_Const + 1.43
Variables: X Y Everybody My_var
Structures: rainy(rochester) teaches(edwards, cs4115)

Structures and Functors

A structure consists of a functor followed by an open parenthesis, a list of comma-separated terms, and a close parenthesis:

What's a structure? Whatever you like.
A predicate nerd(stephen)
A relationship teaches(edwards, cs4115)
A data structure bin(+, bin(-, 1, 3), 4)

Unification

Part of the search procedure that matches patterns.
The search attempts to match a goal with a rule in the database by unifying them.
Recursive rules:

- A constant only unifies with itself
- Two structures unify if they have the same functor, the same number of arguments, and the corresponding arguments unify
- A variable unifies with anything but forces an equivalence

Unification Examples

The = operator checks whether two structures unify:

```
| ?- a = a.
yes
| ?- a = b.
no % Mismatched constants
| ?- 5.3 = a.
no
| ?- 5.3 = X.
X = 5.3 ? ;
yes
| ?- foo(a,X) = foo(X,b).
no
| ?- foo(a,X) = foo(X,a).
X = a
% Constant unifies with itself
% Mismatched constants
% Variables unify
% X=a required, but inconsistent
% X=a is consistent
yes
| ?- foo(X,b) = foo(a,Y).
X = a
Y = b % X=a, then b=Y
yes
| ?- foo(X,a,X) = foo(b,a,c).

\section*{The Searching Algorithm}

\section*{in the order they appear}
search(goal \(g\), variables
for each clause \(\hbar:-t_{1}, \ldots, t_{n}\) in the database

if all successful, return \(e\)
return no

Note: This pseudo-code ignores one very important part of the searching process!

\section*{Order Affects Efficiency}
```

edge(a, b). edge(b, c).
edge(c,d). edge(d, e).
edge(b, e). edge(d, f).
path(X, X).
path(X, Y) :-
edge(X, Z), path(Z, Y).

```


Consider the query
```

| ?- path(a, a).

```

Good programming practice: Put the easily-satisfied clauses first.

\section*{Order Affects Efficiency}
```

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).
path(X, Y) :-
edge(X, Z), path(Z, Y).
path(X, X).

```

Consider the query
```

| ?- path(a, a).

```

Will eventually produce the right answer, but will spend much more time doing so.
path(a,a)
\(\operatorname{path}(a, a)=\operatorname{path}(X, Y)\)

edge( \(\mathrm{a}, \mathrm{Z}\) ) \(=\) edge \((\mathrm{a}, \mathrm{b})\)
Z=b
path(b,a)

\section*{Order Can Cause Infinite Recursion}
```

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).
path(X, Y) :-
path(X, Z), edge(Z, Y).
path(X, X).

```

Consider the query
| ?- path(a, a).



\section*{Prolog as an Imperative Language}

A declarative statement such as

\section*{\(P\) if \(Q\) and \(R\) and \(S\)}
can also be interpreted procedurally as

To solve \(P\), solve \(Q\), then \(R\), then \(S\).
```

go :- print(hello_),
print(world).

```
| ?- go.
hello_world
yes

This is the problem with the last path example.
```

path(X, Y) :-
path(X, Z), edge(Z, Y).

```
"To solve P, solve P..."

\section*{Cuts}

Ways to shape the behavior of the search:
- Modify clause and term order.
Can affect efficiency, termination.
- "Cuts"

Explicitly forbidding further backtracking.

When the search reaches a cut (!), it does no more backtracking.
```

techer(stephen) :- !.
techer(todd).
nerd(X) :- techer(}X\mathrm{).

```
| ?- nerd(X).

X = stephen
yes
```

