
Beathoven

Eunice Kokor, Jake Kwon, Rodrigo
Manubens, Ruonan Xu, & Sona Roy

Introduction

MIDI

● Universal file format
for digital music
production

● Useful within
compositions in
practically all music
software and devices

Goals

● MIDI File -- musical file, imported into
composition software, flexible

● Stacked Music Scores -- simultaneous scores,
same time + key, different (polyphonic)
melodies

● Improvisation -- introduce randomness in note
generation (chords + notes + improv =
randomized music)

● Stretch goal (to build towards) -- melody +
lyrics (tone, no beat = rap)

How do you use it?

Basic Datatypes

● Basic datatypes -- passing by value
○ bool, int, double, char, string
○ Music types: pitch, duration

● pitch:

● duration:

More Datatypes -- passing by reference

● Struct
○ User-defined structs
○ Music type: Note

● Struct: Note
○ pitch: note.p
○ duration: note.d

More Datatypes -- passing by reference

● Array -- dynamically allocated
○ datatype[] id;
○ int[] intarray = [1, 2, 3, 4, 5];
○ Music type: Seq

● Seq
○ An array of Notes
○ <>

■ space-separated
■ int, pitch and

duration wil be
casted to Note.

Operations

● Arithmetic operator, Logical operators
● Array

○ Access: array[idx]
○ Subarray (create a copy):

■ Python-like:
array[0:4]; array[:7]; array[2:]; array[:]

■ Deepcopy an array: arr2 = arr1[:];
○ Concatenate:

[arr1, arr2, ele1, ele2, arr3, ele3, ele4, ele5]

Control Flow Function

● C-Like Syntax
○ If-Else Statement
○ While Statement
○ For Statement
○ Break
○ Return

● Syntax Sugar for For

Function Listing

● print()

● len(Array array): Returns the number of array elements.
● str_of_pitch(pitch pitch’), str_of_duration(duration duration’),

str_of_Note(Note): Returns the string of a pitch, a duration or a Note.

● render_as_midi(Seq seq): Output seq to a Midi file.
● render_seqs_as_midi(int num, Seq ...): Out sequences to a Midi file

(multi-part)

Project Planning

OCaml

● MicroC template -- scanner, parser, ast
● Codegen & restructure ast
● Codegen print function -- turning point

○ Variable assignment
○ Type of variable for printing
○ Create sast

● Codegen structs -- note data structure (pitch & duration)
● Iterative testing -- tests were added incrementally / feature

C Library / MIDI Roadmap

● Recreate MIDI Library -- too similar to interpreter

● LLVM Modules + C MIDI Library -- llvm program suite
implementation was problematic given clang linking

● LLVM Modules + Wrapper Script + C MIDI Library -- Optimal given
workaround and implementation of LLVM modules

Implementation

Compiler
Architecture
3 separate parts, linked

together

Compiler
Architecture
3 separate parts, linked

together

AST
Abstract syntax tree

SAST
Semantically-checked

abstract syntax tree

Pitch Declaration and Assignment

1) pitch p = C4;
2) pitch q = 2;

LitInt(d) -> S.LitPitch(Char.chr (((d+1) mod 7 + 65)), 4, 0)

0 1 2 3 4 5 6 7

H C D E F G A B

H C D E F G A B

NA 67 68 69 70 71 65 66

Testing

General Testing Plan

- After Something Gets Implemented on
Compiler

- Add expected functional code to
“testall.bt”

- Grab individual test cases from functional
code.

- Start from basics, like assignment to using
multiple things.

- Checking for exceptions
- Exeptions.ml contains definitions of most

exceptions raised throughout our compiler
- Create fail tests for those exceptions
- Also add parser failures to failure tests

- Examples: reserved keywords not
in correct order

System Music Testing

- Since the midi file is generated in a
different directory, created a script to test
all our example files midi files

Rhythm.bt

Demo

Fur Elise, Sweet Child
of Mine

