
LéPiX - Ceci n’est pas un Photoshop

Fatima Koly (fak2116)

Manager

fak2116@barnard.edu

Gabrielle Taylor (gat2118)

Tester

gat2118@columbia.edu

Jackie Lin (jl4162)

Tester

jl4162@columbia.edu

Akshaan Kakar (ak3808)

Codegen & Language Guru

ak3808@columbia.edu

ThePhD (jm3689)

Codegen & Language Guru

jm3689@columbia.edu

https://github.com/ThePhD/lepix

September 28, 2016

https://github.com/ThePhD/lepix

Contents

1 An Overview 2
1.1 Introduction . 2
1.2 Enter LéPiX . 2

2 The LéPiX Language 3
2.1 Language . 3

2.1.1 User Defined Types 3
2.1.2 Syntax . 4
2.1.3 Built-ins . 5
2.1.4 Primitive Types . 6

3 Examples 8

4 Codegen 10
4.1 LLVM IR . 10
4.2 SPIR-V . 10

5 Stretch Goals 12
5.1 User Defined Types . 12
5.2 Namespacing . 12
5.3 Named Parameters . 12
5.4 Lambda Functions . 13
5.5 Standard Library Implementation 13
5.6 Movies: Encoding . 13
5.7 Windowing: Realtime Visuals 13
5.8 Error Noises . 13

1

Chapter 1

An Overview

1.1 Introduction

Heterogeneous computing and graphics processing is an area of intense re-
search. Many existing solutions – such as C++ AMP [5] and OpenCL [3]
– leverage the power of an existing language and add preprocessors and
software libraries to connect a user to allow code to be run on the GPU.
Due to its massively parallelizable nature, code executed on the GPU can
be orders of magnitude faster, but comes at the cost of having to master
a specific programming library and often learn new framework-specific or
platform-specific language subsets in order to compute on the GPU.

1.2 Enter LéPiX

We envision LéPiXto be a graphics processing language based loosely on
a subset of the C language. Using an imperative style with strong static
typing, we plan to support primitives that enable quick and concise pro-
grams for image creation and manipulation. The most novel feature we
have planned for the language is the ability to compile to both the CPU
as well as the GPU. The reason is to enable high performance and ease the
pain most notably found with trying to write applications which leverage the
power of the GPU at the cost of a steep learning curve for explicit non-CPU
device computation APIs, e.g. OpenGL Compute Shaders, DirectCompute,
OpenCL, CUDA, and others. The final goal is to enable the writing of com-
puter vision and computer graphics algorithms in LéPiX with relative ease
compared to other languages.

2

Chapter 2

The LéPiX Language

2.1 Language

The language itself is meant to follow loosely from imperative C, but it
subject to change as we refine our desired set of primitives and base oper-
ations. What follows is a loose definition of the primitive types, operations
we would like to implement to get a baseline for the language, and how
would would like to put those together syntactically and grammatically. All
of these definitions will be mostly informal.

The goal of LéPiX is to provide a strongly and statically typed language
by which to perform image manipulation easily. The hope is that powerful
algorithms can be expressed in the language by providing a useful set of
basic types, including the concept of a pixel and a natively slice-able matrix
type that will serve as the basis for an image.

• Primitive Data Type: the core types defined by the language itself and
given a set of supportable operations

• Built-ins: some of the built-in functions to help users

• Function Definitions: how to define a function in the language and use
it

• Operators: which operators put into the language and operate on the
primitive types

2.1.1 User Defined Types

Support for user-defined types is planned, but will be a stretch goal (5.1).
We want to support having user-defined types that can be used everywhere,

3

and for it to be able to overload the conceivable set of all operations.

2.1.2 Syntax

This is a basic guide to the syntax of the language. We are striving to develop
a C-Like imperative language. It will follow many of the C conventions, but
with some differences that we think will better fit the domain we are striving
to work within. As we do not have a formal grammer just yet, we will present
potential programs that we wish to allow to generate appropriate code. You
can find these example programs in 3. Below are some quick points about
the LéPiX language.

Namespacing As a stretch goal, LéPiX will attempt to support names-
pacing, to avoid record collision problems as present in OCaml (without the
use of modules) and to formalize the good practice of of prepending the short
name of the module / library to all functions in C code. Other languages
have explicit support. LéPiX will attempt to encourage code sharing and
reuse by including the use of namespacing.

Keywords The following words will be reserved for use with the language:
namespace, struct, class , typename, typedef, for, while, break, if , elseif , else , void,

unit, int , float , uint , pixel , image, vec, vector, mat, matrix. In addition, all iden-
tifiers containing __ (two underscores) are reserved for the use of the com-
piler and the standard library.

The standard library reserves the usage of the namespace lib . The lan-
guage will place intrinsics and built-ins within the lpx namespace.

Function Definitions Typical function definitions will follow a usual C-
style syntax. An example in pseudo-lexer code:

1 f unc t i on <re turn type> name (<parameter l i s t >) {
2 <statement / expres s ion>
3 . . .
4 }

code/func–def.lex

Ideally, we would like the order of function definition not to matter,
so long as it appears somewhere in the whole source code listing. Early
versions of the LéPiX compiler might require definition before use, for sanity
purposes.

As a stretch goal, there are plans for lambda functions (anonymous func-
tion values) to be generated by a much more terse syntax.

4

Control Flow Control flow will follow a C-style syntax as well. An ex-
ample in pseudo-lexer code:

1 i f expr {
2 <statement / expres s ion>
3 . . .
4 }
5 e l s e i f expr {
6 <statement / expres s ion>
7 . . .
8 }
9 e l s e {

10 <statement / expres s ion>
11 . . .
12 }

code/flow–control.lex

Operations The LéPiX language will support most of the basic mathe-
matical operators. Other operators will be provided VIA functions. These
include:

• Mathematical - plus (+), minus (-), multiply (*),

divide (/), modulus (%), power of (**)

• Logical - and (&&), or (||), less than (<),

greater than (>), equal to (==), not equal to (!=)

negate (!)

Some of these will use both the symbol and the name, such as ”not” for
negation. Support for bitwise operations, such as left shift and right shift as
well as bitwise and / bitwise or, will come as a stretch goal, depending on
whether we can handle these basics. Ternary conditionals may also prove
useful, but will not be immediately supported.

Comments Single-line comments will begin with //. Multi-line and nestable
comments will begin with /∗∗/ will be supported as well.

2.1.3 Built-ins

Some useful built-in functions that will be provided with the language:

• Trigonometric functions: lib . sin, lib .cos, lib .tan, lib .asin, lib .acos, lib .

atan, lib .atan2

5

• Power Functions: lib . sqrt, lib .cbrt, lib .pow

• Exponential Functions: lib .expe, lib .exp2, lib . loge, lib . log2, lib .log10

All degree arguments will come in radians. Other functions that op-
erate on built-in types will be provided as library functions, to allow for
replacement if necessary.

2.1.4 Primitive Types

Primitives are integral types and multi-dimensional array types. Vectors,
Matrices, and Pixels are all subsets of N-dimensional array types. String
will be presented as a built-in type, but may be implemented either as a
built-in or just an always-included library type. The purpose of string will
be specifically to handle reading in and writing out from the file system, as
that is the only way to handle such a case. See 2.1 for details.

6

Table 2.1: Primitive Types in LéPiX

Type variants Purpose

void nothing
built in single-value /

empty type

int#
can be 8/16/32/64

(defaults to 32 without name)
signed integral type

uint#
can be 8/16/32/64

(defaults to 32 without name)
unsigned integral type

float#
can be 16/32/64

(defaults to 32 without name)
floating type

<type name>[<optional #>]

array type; can be

multidimensional by

adding [<optional # >]

basic primitive that will

help us represent an

image in its decoded form;

can be sliced to

remove 1 dimension

vec#<type name>
aliases for 1-dimensional

fixed-size arrays
base type for pixels

mat#<type name>
aliases to 2-dimensional

fixed-size arrays
can be sliced into vectors

string
utf8-encoded string;

potentially more later

primarily, to address

the file system;

not really interested in

complex text handling;

basically treated as an array

of specially-typed uint8

pixel
rgba (red-green-blue-alpha);

hsv (hue saturation value)

in the future, this will be something

that will need to be customizable

to support varying image types

of different bit depths

7

Chapter 3

Examples

The following are some examples of programs that we would like to be
written in LéPiX. This does not reflect final syntax and is mostly based on
equivalent or near-equivalent C-style code:

1 f unc t i on image red (i n t width , i n t he ight) {
2 // Create an image o f a s p e c i f i c width / he ight
3 image r e t = image (width , he ight) ;
4 f o r (i n t i = 0 ; i < width ; i++) {
5 f o r (i n t j = 0 ; j < he ight ; j++) {
6 // r , g , b c r e a t i o n
7 r e t [i] [j] = p i x e l (1 , 0 , 0) ;
8 }
9 }

10

11 re turn r e t ;
12 }
13

14 f unc t i on i n t main () {
15 image img = red (img) ;
16 l i b . save (img) ;
17 re turn 0 ;
18 }

Listing 3.1: red.lpx

The red example shows up some simple conditionals in a for loop to
write all-red to an image. It is not the most exciting code, but it has a lot
of moving parts and will help us test several parts of the library, from how
to call functions to basic iteration techniques.

1 f unc t i on void f l i p (image img) {
2 f o r (i n t r i = 0 ; r i < img . he ight / 2 ; r i ++) {
3 // matrix s l i c i n g : get back array from index

8

4 p i x e l [] toprow = img [r i] ;
5 // 0−based index ing
6 p i x e l [] bottomrow = img [img . he ight − r i − 1] ;
7 f o r (i n t c i = 0 ; c i < img . width ; ++c i) {
8 // g e n e r i c swap c a l l in l i b r a r y
9 l i b . swap (toprow [c i] , bottomrow [c i]) ;

10 }
11 }
12 }
13

14 f unc t i on i n t main () {
15 image img = l i b . read (”meow . png”) ;
16 f l i p (img) ;
17 l i b . save (img) ;
18

19 // i m p l i c i t r e turn 0 :
20 // we want t h i s to be ab le to work with
21 // command−l i n e environments as we l l
22 }

Listing 3.2: flip.lpx

This above code is a bit more complicated. It shows that we can save
a slice of a matrix’s (image’s) row, operate on it, and even call the library
function lib .swap on its pixel elements. It also demonstrates a string literal,
and passing it to the lib .read function to pull out a regular image from a
PNG, and then saving that same image. It also shows off an implicit return
0 (we expect our programs to be run in the context of a shell environment,
and to play nice with the existing C tools in that manner).

9

Chapter 4

Codegen

4.1 LLVM IR

The current goal for generating the code for this language is to use LLVM
and serialize to LLVM IR. This will allow our language to work on a multiple
of platforms that LLVM supports, provided we can successfully connect our
AST / DAG with the our code generator.

4.2 SPIR-V

For the GPU, we still want to compile to LLVM IR. But, with the caveat
that we make it work to push out to SPIR-V code using the Khronos LLVM
¡-¿ SPIR-V Bidirectional Translator[1]1. The good news is that everything
from our source code processing steps to our DAG / AST generation can
be done in OCaml. However, SPIR-V is new and OCaml bindings for this
relatively new project are not something that is quite established: it is
conceivable that our code generator will be written in C++ as opposed to
any other language, simply because of the library power behind what is
already present is written in C and C++, and interfacing that with OCaml
might be exceptionally difficult. Granted, we could also write an OCaml
Code Generator for SPIR-V from scratch, but this does not seem like a
prudent use of our time.

It is also very important to note that the LLVM IR ¡-¿ SPIR-V Translator
produces SPIR-V, which by itself cannot be run on anything. We would need
a C or C++ compiled Vulkan Driver to take that bit of our program and run
it in SPIR-V land. Furthermore, many operations – such as data reading –

1Available here: https://github.com/KhronosGroup/SPIRV-LLVM

10

are not instructions we can exactly slot into SPIR-V code, and would require
a bootstrapper of some sort nontheless.

11

Chapter 5

Stretch Goals

5.1 User Defined Types

User-defined structures are a stretch goal of this project. The core idea
is that if we can manage to create pixel, vec#∗, mat#∗, etc. types using
the language, we would be able to simply make this kind of functionality
available to users. Currently, we plan to hard code these types in at the
moment, however.

5.2 Namespacing

Similar to user defined types, namespacing allows an element of organization
to be brought to written code. Currently, we are going to hard code built
ins to the lib and lpx namespaces.

5.3 Named Parameters

This is an entirely fluff goal to make it easier to call certain functions. The
idea is that arguments not yet initialized by the ordered list of arguments
to a function call can be specified out-of-order – as long as others inbetween
are defaulted – by passing a name=(expression) pairing, separated by commas
like regular function arguments.

12

5.4 Lambda Functions

As mentioned in 2.1.2, we would like to support lambdas as a way of defini-
tion functions. Currently, we do not know what the most succinct and terse
syntax for our language would be.

5.5 Standard Library Implementation

It would be nice to fill out a standard library implementation, to vet the
LéPiX compiler. Candidates would include some basic functions in the lib

namespace for manipulation of the image type.

5.6 Movies: Encoding

If we can have built in types for image and the like, then LéPiX could theo-
retically handle movies by presenting to the user frames of data in sequential
order. Doing this is orders of magnitude difficult.

5.7 Windowing: Realtime Visuals

Part of the magic of the graphics card is its ability to perform specific kinds
of computation very quickly. It would be very beneficial to have some sort
of way to display those visuals without having to serialize them to disk
(e.g., a display function or a window of some sort which can be backed by a
write-only image).

5.8 Error Noises

The compiler should make a snobby ”Ouhh Hooo!” noise in french when the
user puts in ill-formed code.

13

Bibliography

[1] Khronos Group, Khronos Registry: SPIR-V 1.1, April 18, 2016.
https://www.khronos.org/registry/spir-v/

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Pat Hanrahan,
Mike Houston, Kayvon Fatahalian, Brook for GPUs, Stanford University,
2016. https://graphics.stanford.edu/projects/brookgpu/arch.html

[3] Khronos Group, OpenCL 2.2, April 12, 2016.
https://www.khronos.org/opencl/

[4] Chuck Walbourn, Microsoft, Compute Shaders, July 14, 2010.
https://blogs.msdn.microsoft.com/chuckw/2010/07/14/directcompute/

[5] Dillion Sharlet, Aaron Kunze, Stephen Junkins, Deepti Joshi,
Shevlin Park: Implementing C++ AMP with Clang/LLVM and
OpenCL, November 2012. http://llvm.org/devmtg/2012-11/Sharlet-
ShevlinPark.pdf

14

	An Overview
	Introduction
	Enter LéPiX

	The LéPiX Language
	Language
	User Defined Types
	Syntax
	Built-ins
	Primitive Types

	Examples
	Codegen
	LLVM IR
	SPIR-V

	Stretch Goals
	User Defined Types
	Namespacing
	Named Parameters
	Lambda Functions
	Standard Library Implementation
	Movies: Encoding
	Windowing: Realtime Visuals
	Error Noises

