
LéPiX Language Specification

Ceci n’est pas un Photoshop

Fatima Koly (fak2116)

Manager

fak2116@barnard.edu

Gabrielle Taylor (gat2118)

Language Guru

gat2118@columbia.edu

Jackie Lin (jl4162)

Tester

jl4162@columbia.edu

Akshaan Kakar (ak3808)

Codegen

ak3808@columbia.edu

ThePhD (jm3689)

System Architect

jm3689@columbia.edu

https://github.com/ThePhD/lepix

October 26, 2016

https://github.com/ThePhD/lepix

Contents

I Introduction 7

1 Tutorial 8

1.1 Hello, World! . 8

1.2 Variables and Declarations . 9

1.2.1 Variables . 9

1.2.2 Mutability . 9

1.3 Control Flow . 10

1.4 Functions . 10

1.4.1 Defining and Declaring Functions 10

1.4.2 Parameters and Arguments 11

II Reference Manual 12

2 Expressions, Operations and Types 13

2.1 Variable Names and Identifiers 13

2.1.1 Identifiers . 13

1

2.2 Literals . 14

2.2.1 Kinds of Literals . 14

2.2.2 Boolean Literals . 14

2.2.3 Integer Literals . 14

2.2.4 Floating Literals . 15

2.2.5 String Literals . 15

2.3 Variable Declarations . 16

2.3.1 let and var declarations 16

2.4 Initialization . 16

2.4.1 Variable Initialization 16

2.4.2 Assignment . 17

2.5 Access . 17

2.5.1 Member Access . 17

2.5.2 Member Lookup . 17

2.6 Parenthesis . 18

2.7 Arithmetic Expressions . 18

2.7.1 Binary Arithmetic Operations 18

2.7.2 Unary Arithmetic Operations 19

2.8 Incremental Expressions . 19

2.8.1 Incremental operations 19

2.9 Logical Expressions . 19

2.9.1 Binary Compound Boolean Operators 19

2.9.2 Binary Relational Operators 20

2

2.9.3 Unary Logical Operators 21

2.10 Bitwise Operations . 21

2.10.1 Binary Boolean Operators 21

2.11 Operator and Expression Precedence 22

2.12 Expression and Operand Conversions 22

2.12.1 Boolean Conversions 22

2.12.2 Mathematical Conversions 22

3 Functions 24

3.1 Functions and Function Declarations 24

3.1.1 Function Definitions 24

3.1.2 Function Declarations 25

3.1.3 Function Scope and Parameters 26

4 Data Types 27

4.1 Data Types . 27

4.1.1 Primitive Data Types 27

4.1.2 Derived Data Types 28

5 Program Structure and Control Flow 29

5.1 Statements . 29

5.2 Blocks and Scope . 29

5.2.1 Blocks . 30

5.2.2 Scope . 30

5.2.3 Variable Scope . 30

3

5.2.4 Function Scope . 31

5.2.5 Control Flow Scope 31

5.3 Namespaces . 31

5.4 if . 31

5.5 switch . 32

5.6 while . 33

5.7 for . 34

5.8 break and continue . 35

6 Parallel Execution 37

6.1 Parallel Execution Model . 37

6.2 Syntax . 37

6.3 Threads . 38

III Grammar Specification 39

7 Grammar 40

7.1 Lexical Definitions and Conventions 40

7.1.1 Tokens . 40

7.1.2 Comments . 40

7.1.3 Identifiers . 41

7.1.4 Keywords . 41

7.1.5 Literals . 41

7.2 Expressions . 43

4

7.2.1 Primary Expression 44

7.2.2 Postfix Expressions . 44

7.2.3 Unary Expression . 45

7.2.4 Casting . 45

7.2.5 Multiplicative Expressions 46

7.2.6 Additive Expressions 46

7.2.7 Relational Expressions 46

7.2.8 Equality Expression 47

7.2.9 Logical AND Expression 47

7.2.10 Logical OR Expression 47

7.2.11 Assignment Expressions 47

7.2.12 Assignment Lists . 48

7.2.13 Declarations . 48

7.2.14 Structure Declaration 48

7.2.15 Function Declaration 49

7.3 Statements . 49

7.3.1 Expression Statements 49

7.3.2 Statement Block . 50

7.3.3 Loop Statements . 50

7.3.4 Jump Statements . 51

7.3.5 Return Statements . 51

7.4 Function Definitions . 52

7.5 Type Conversions . 52

5

7.6 Scope . 52

7.7 Preprocessor . 52

7.8 Grammar Listing . 53

6

Part I

Introduction

7

Chapter 1

Tutorial

1.1 Hello, World!

This is an example of a Hello World program in LéPiX. It creates an array
from an initializer, and then proceeds to save it to the directory of the
running program under the name ”hello .bmp”:

1 fun main () : i n t {
2 // 2 dimens iona l array
3 // o f i n t e g e r s , i n i t i a l i z e d as a s t r i n g
4 // from a ”bitmap”
5 var ar r : i n t [[]] = ”\
6 |
7 | | | | | | | | | | | | | | | |
8 |
9 | | | | | | | | | | | | | | | | | |

10 | ” ;
11 l i b . save (” h e l l o .bmp” , a r r) ;
12 }

Listing 1.1: hello world

8

1.2 Variables and Declarations

1.2.1 Variables

Variables are made with the and var declaration. You can declare and assign
variables by giving them a name and then referencing that name in other
places.

1 fun main () : i n t {
2 var a : i n t = 24 * 2 + 1 ;
3 // a == 49
4 var b : i n t = a % 8 ;
5 // b == 1
6 var c : i n t [[5 , 2]] = [
7 0 , 2 , 4 , 6 , 8 , 10 ;
8 1 , 3 , 5 , 7 , 9 , 11 ;
9] ;

10 var value : i n t = a + b + c [0 , 4] ;
11 // value == 58
12 re turn value ;
13 }

Listing 1.2: variable declaration and manipulation

1.2.2 Mutability

Variables can also be declared immutable or unchanging by declaring them
with let . That is, let is the same as a var const, and let mutable.

1 fun main () : i n t {
2 l e t a : f l o a t = 3 1 . 5 ;
3 var const b : f l o a t = 0 . 5 ;
4 var c : i n t = 0 ;
5 c = l i b . trunc (a + b) ;
6 // compi le r e r r o r : ' var const ' v a r i a b l e i s immutable
7 b = 2 . 5 ;
8 // compi le r e r r o r : ' l e t ' v a r i a b l e i s immutable
9 a = 1 . 1 ;

10 re turn c ;
11 }

Listing 1.3: mutability

9

1.3 Control Flow

Control flow is important for programs to exhibit more complex behaviors.
LéPiX has for and while constructs for looping, as well as if , else if , else

statements. They can be used as in the following sample:

1 fun main () : i n t {
2 f o r (var x : i n t = 0 to 10) {
3 var x : i n t = l i b . random int (0 , 40) ;
4 i f (x < 20) {
5 l i b . p r i n t (” I t ' s l e s s than 20 ! ”) ;
6 }
7 e l s e {
8 l i b . p r i n t (” I t ' s equal to or g r e a t e r than 20”) ;
9 }

10 }
11 }

”intro/tutorial/code/flow.hak”

1.4 Functions

1.4.1 Defining and Declaring Functions

Functions can be called with a simple syntax. The goal is to make it easy to
pass arguments and specify types on those arguments, as well as the return
type. All functions are defined by starting with the fun keyword, followed by
an identifier including the name, before an optional list of parameters.

1 fun sum (ar r : i n t []) : i n t {
2 i n t a = 2 ;
3 i n t b = 3 ;
4 re turn a + b ;
5 }
6

7 fun numbers () : i n t [] {
8 re turn [1 , 2 , 3] ;
9 }

10

11 fun main () : i n t {
12 re turn sum(numbers ()) ;
13 }

Listing 1.4: functions

10

1.4.2 Parameters and Arguments

All arguments given to a function for a function call are passed by value,
unless the reference symbol & is written just before the argument, as shown
in the below example. This allows a person to manipulate a value that was
passed in directly, rather than receiving a copy of it the argument.

1 fun f ibonacc i t o (n : int , &s to rage : i n t []) : i n t {
2 i n t index = 0 ;
3 var r e s u l t : i n t = 0 ;
4 var n 2 : i n t = 0 ;
5 var n 1 : i n t = 1 ;
6 whi le (n > 0) {
7 r e s u l t = n 1 + n 2 ;
8 s t o rage [index] = r e s u l t ;
9 n 2 = n 1 ;

10 n 1 = r e s u l t ;
11 −−n ;
12 ++index ;
13 }
14 re turn r e s u l t ;
15 }
16

17 fun main () : i n t {
18 var s to rage : i n t [3] = [] ;
19 var x : i n t = f ibonacc i t o (3 , s t o rage) ;
20 re turn x ;
21 }

Listing 1.5: arguments

11

Part II

Reference Manual

12

Chapter 2

Expressions, Operations and
Types

2.1 Variable Names and Identifiers

2.1.1 Identifiers

1. All names for all identifiers in a LéPiX program must be composed of
a single start alpha codepoint followed by either zero or more of a
digit or an alpha codepoint. Any identifier that does not follow this
scheme and does not form a valid keyword, literal or definition is
considered ill-formed.

2. All identifiers that containing two underscores in any part of the
name are reserved for usage by the compiler implementation details
and may not be used by programs. If an identifier has two underscores
the program is considered ill-formed.

3. All identifiers prefixed by ‘ lib .’ (i.e., belong in the lib namespace) are
reserved by the standard to the standard library and nothing may be
defined in that namespace by the program, aside from
implementations of the standard library.

13

2.2 Literals

2.2.1 Kinds of Literals

There are many kinds of literals. They are:

literal:

boolean-literal

integer-literal

floating-literal

string-literal

2.2.2 Boolean Literals

1. A boolean literal are the keywords true or false .

2.2.3 Integer Literals

1. An integer literal is a valid sequence of digits with some optional
alpha characters that change the interpretation of the supplied literal.

2. A decimal integer literal uses digits ‘0’ through ‘9’ to define a base-10
number.

3. A hexidecimal integer literal uses digits ‘0’ through ‘9’, ‘A’ through ‘F’
(case insensitive) to define a base-16 number. It must be prefixed by
0x or 0x.

4. An octal integer literal uses digits ‘0’ and ‘7’ to define a base-8 number.
It must be prefixed by 0c or 0C.

5. A binary integer literal uses digits 0 and 1 to define a base-2 number.
It must be prefixed by 0b (case sensitive).

6. An n-digit integer literal uses the characters below to define a base-n
number. It must be prefixed by 0n or 0N. It must be suffixed by #n,
where n is the desired base. The character set defined for these bases

14

goes up to 63 characters, giving a maximum arbitrary base of 63. The
characters which are:

0 − 9, A − Z, a − z,

7. Arbitrary bases for n-digit must be base-10 numbers.

8. Groups of digits may be separated by a ' and do not change the
integer literal at all.

2.2.4 Floating Literals

1. A floating literal has two primary forms, utilizing digits as defined in
2.2.3.

2. The first form must have a dot ‘ .’ preceded by an integer literal
and/or suffixed by an integer literal. It must have one or the other,
and may not omit both the prefixing or suffixing integer literal.

3. The second form follows 2, but includes the exponent symbol e and
another integer literal describing that exponent. Both the exponent
and integer literal must be present in this form, but if the exponent is
included then the dot is not necessary and may be prefixed with only
an integer literal or just an integer literal and a dot.

2.2.5 String Literals

1. A string literal is started with a single ‘ '’ or double ‘”’ quotation mark
and does not end until the next matching single ‘ '’ or double ‘”’
quotation mark character, with respect to what the string was started
with. This includes any and all spacing characters, including newline
characters.

2. Newline characters in a multi-line string will be included in the string
as an ASCII Line Feed \n character.

3. A string literal must remove the leading space on each line that are
equivalent to all other lines in the text, and any empty leading space
at the start of the string.

15

4. A string literal may retain the any leading space and common
indentation by prefixing the opening single or double quotation mark
with an ‘R’.

2.3 Variable Declarations

2.3.1 let and var declarations

variable-initialization:

let | var (mutable | const)optional < identifier> : <type>;

1. A variable can be declared using the let and var keywords, an identifier
as defined in 2.1.1 and optionally followed by a colon ‘ :’ and type
name. This is called a variable declaration.

2. A variable declared with let is determined to be immutable.
Immutable variables cannot have their values re-assigned after
declaration and initialization.

3. A variable declared with var is immutable. Mutable variables can have
their values re-assigned after declaration and initialization.

4. let mutable is equivalent to var const.

5. It is valid to initialize or assign to a mutable variable from an
immutable variable.

6. A declaration can appear at any scope in the program.

2.4 Initialization

2.4.1 Variable Initialization

variable-declaration:

let | var (mutable | const)optional < identifier> : <type> = (

expression);

16

1. Initialization is the assignment of an expression on the right side to a
variable declaration.

2. If the expression cannot directly initialize or be coerced to initialize
the type on the left, then the program is ill-formed.

2.4.2 Assignment

assignment-expression:

expression = expression

2.5 Access

2.5.1 Member Access

member-access-expression:

(expression) . < identifier>

1. Member access is performed with the dot ‘ .’ operator.

2. If the expression does not evaluate to a type that can be accessed with
the dot operator, the program is ill-formed.

3. If the identifier is not available per lookup rules in 2.5.2 on the
evaluated type, the program is ill-formed.

2.5.2 Member Lookup

1. When a member is accessed through the dot operator as in 2.5.1, a
name must be found that matches the supplied identifier . If there is
none,

17

2.6 Parenthesis

parenthesis-expression:

‘(’ expression ‘)’

1. Parentheses define expression groupings and supersede precedence
rules in 2.1.

2.7 Arithmetic Expressions

2.7.1 Binary Arithmetic Operations

addition-expression:

expression + expression

subtraction-expression:

expression − expression

division-expression:

expression / expression

multiplication-expression:

expression * expression

modulus-expression:

expression % expression

1. Symbolic expression to perform the commonly understood
mathematical operations on two operands.

2. All operations are left-associative.

18

2.7.2 Unary Arithmetic Operations

unary-minus-expression:

−expression

1. Unary minus is typically interpreted as negation of the single operand.

2. All operations are left-associative.

2.8 Incremental Expressions

2.8.1 Incremental operations

post-increment-expression:

(expression)++

pre-increment-expression:

++(expression)

post-decrement-expression:

(expression)−−

pre-decrement-expression:

−−(expression)

1. Symbolic expression that should semantically evaluate to
(expression) = (expression) + 1.

2. (expression) is only evaluated once.

2.9 Logical Expressions

2.9.1 Binary Compound Boolean Operators

and-expression:

19

expression and expression

expression && expression

or-expression:

expression or expression

expression || expression

1. Symbolic expressions to check for logical conjunction and disjunction.

2. For the and−expression, short-circuiting logic is applied if the expression
on the left evaluates to false. The right hand expression will not be
evaluated.

3. For the or−expression, short-circuiting logic is applied if the expression
on the left evaluates to true. The right hand expression will not be
evaluated.

4. All operations are left associative.

2.9.2 Binary Relational Operators

equal-to-expression:

expression == expression

not-equal-to-expression:

expression != expression

less-than-expression:

expression < expression

greater-than-expression:

expression > expression

less-than-equal-to-expression:

expression <= expression

greater-than-equal-to-expression:

20

expression >= expression

1. Symbolic expression to perform relational operations meant to do
comparisons.

2. All operations are left-associative.

2.9.3 Unary Logical Operators

inversion-expression:

! expression

complement-expression:

˜expression

1. Symbolic expression to perform unary logic operations, such as logical
complement and logical inversion.

2.10 Bitwise Operations

2.10.1 Binary Boolean Operators

bitwise-and-expression:

expression & expression

bitwise-or-expression:

expression | expression

bitwise-xor-expression:

expression ˆ expression

1. Symbolic expressions to perform logical / bitwise and, or, and
exclusive-or operations.

2. All operations are left associative.

21

2.11 Operator and Expression Precedence

Precedence is defined as follows:

2.12 Expression and Operand Conversions

2.12.1 Boolean Conversions

1. Expressions that are expected to evaluate to booleans for the purposes
of Flow Control as defined in 5.3 and for common relational and logical
operations as in 2.9 will have their rules checked against the following:

(a) If the evaluated value is already a boolean, use the value directly.

(b) If the evaluated value is of an integral type, then any such type
which compares equivalent to the integral literal 0 will be false :
otherwise, it is true.

(c) If the evaluated value is of a floating point type, then any such
type which compares equivalent to the floating point literal 0.0

will be false : otherwise, it is true.

(d) Otherwise, if there is no defined conversion, then the program is
ill-formed.

2.12.2 Mathematical Conversions

1. Conversion will not be implicitly done on any operands.

2. If there is no operator defined for those two types exactly, then the
program is ill-formed.

22

Table 2.1: Precedence Table

Precedence Operator Variants Associativity

1

++ −−
()

[]

.

Postfix Left to Right

2

++ −−
+ -

! ∼
Prefix, Unary Operations Right to Left

3

*

/

%

Binary Operations Left to Right

4
+

-

5 << >>

6

<

<=

>

>=

7 == !=

8 &

9 ˆ

10 |
11 ||

12

= += -=

*= /= %=

<<= >>=

&=

ˆ=

|=

Assignments Right-To-Left

23

Chapter 3

Functions

3.1 Functions and Function Declarations

Functions are independent code that perform a particular task and can be
reused across programs. They can appear in any order and in one or many
source files, but cannot be split among source files.

Function declarations tell the compiler how a function should be called,
while function definitions define what the function does.

3.1.1 Function Definitions

1 fun < i d e n t i f i e r > ([< parameter dec larat ions >]) : <return type>
2 {
3 <function body>
4 [r e turn <expres s ion > ;]
5 }

1. All function definitions in LéPiX are of the above form where they
begin with the keyword fun, followed by the identifier, a list of optional
parameter declarations enclosed in parentheses, optionally the return

type, and the function body with an optional return statement.

2. return types can be variable types or void.

24

3. Functions that return void can either omit the return statement or leave
it in or return the value unit, as shown:

1 fun zero (&ar r : i n t []) : void {
2 f o r (var i : i n t = 0 to ar r . l ength)
3 {
4 ar r [i] = 0 ;
5 }
6 }
7

1 fun zero (&ar r : i n t []) : void {
2 f o r (var i : i n t = 0 to ar r . l ength)
3 {
4 ar r [i] = 0 ;
5 }
6 re turn ;
7 }
8

4. Functions that return any other variable type must include a return

statement and the expression in the return statement must evaluate to
the same type as the return type or be convertible to the return type:

1 fun add (arg1 : f l o a t , arg2 : f l o a t) : f l o a t
2 {
3 re turn arg1 + arg2 ;
4 }
5

5. In the function add, arg1 and arg2 are passed by value. In the
function zero, arr is passed by reference.

6. Function input parameters can be passed by value, for all variable
types, or by reference, only for arrays and array derived variable types.
See 3.1.3 for more about passing by value and reference.

3.1.2 Function Declarations

1. All function declarations in LéPiX are of the form

25

1 fun < i d e n t i f i e r > ([< parameter dec larat ions >]) : <
return type >;

2

2. The function declaration for the add function from 3.1.1 would be

1 fun add (arg1 : f l o a t , arg2 : f l o a t) : f l o a t ;
2

3. Function declarations are identical to function definitions except for
the absence or presence of the code body. Function declarations are
optional, but useful to include when functions are used across multiple
source files to ensure that functions are called appropriately.

3.1.3 Function Scope and Parameters

1. Variables are declared as usual within the body of a function. The
variables declared within the body of a function exist only in the scope
of the function and are discarded when they go out of scope.

2. External variables are passed into functions as parameters. All
variable types except arrays and array derived variable types are
passed by value. Arrays and array derived variable types can be
passed by both value and reference.

3. Passing value copies the object, meaning changes are made to the copy
within the function and not the original. Passing by reference gives a
pointer to the original object to the function, meaning changes are to
the original within the function.

4. To pass by value to a function, use the variable name: add (x, y) ;

5. To pass by reference to a function, use the symbol & and the variable
name, as in zero (&arr);.

26

Chapter 4

Data Types

4.1 Data Types

The types of the language are divided into two categories: primitive types
and data types derived from those primitive types. The primitive types are
the boolean type, the integral type int, and the floating-point type float . The
derived types are struct, Array, and image and pixel, which are both special
instances of arrays.

4.1.1 Primitive Data Types

1. int

By default, the int data type is a 32-bit signed two’s complement
integer, which has a minimum value of −231 and a maximum value of
232.

2. float

The float data type is a single precision 32-bit IEEE 754 floating point.

3. boolean

The boolean data type has possible values true and false.

27

4.1.2 Derived Data Types

Besides the primitive data types, the derived types include arrays, structs,
images, and pixels.

1. array

An array is a container object that holds a fixed number of values of a
single type. Multi-dimensional arrays are also supported. They need
to have arrays of the same length at each level.

2. pixel

A pixel data type is a wrapper for an array that will contain the
representation for each pixel of an image. It will contain the rgb
values, each as a separate int, and the gray value of a pixel.

3. image

The image data type is just an alias for a 2-dimensional array. The 2-d
array will define the size of an image and contains a pixel as each of
its data elements.

4. struct

A structure is a collection of one or more variables, possibly of different
types, grouped together under a single name for convenient handling.
Structures help to organize data because they permit a group of
related variables to be treated as a unit instead of as separate entities.

28

Chapter 5

Program Structure and
Control Flow

5.1 Statements

Any expression followed by a semicolon becomes a statement. For example,
the expressions x = 2, lib.save(...), return x become statements

x = 2;

lib.save(...);

return x;

The semicolon is used in this way as a statement terminator.

5.2 Blocks and Scope

Braces { and } are used to group statements in to blocks. Braces that
surround the contents of a function are an example of grouping statements
like this. Statements in the body of a for, while, if or switch statement
are also surrounded in braces, and therefore also contained in a block.
Variables declared within a block exist only in that block. A semicolon is
not required after the right brace.

29

5.2.1 Blocks

At any point in a program, braces can be used to create a block. For
example,

1 var x : i n t = 2 ;
2 var y : i n t = 4 ;
3 var r e s u l t : i n t ;
4 {
5 var z : i n t = 6
6 r e s u l t = x + y + z ;
7 }

In this trivial example, the statements on lines 5 and 6 live within their own
block. Blocks do have access to named definitions of their surrounding
scope, however variables define within a block exist only within that block.

5.2.2 Scope

Scopes are defined as the collection of identifiers and available within the
current lexicographic block1. Every program is implicitly surrounded by
braces, which define the ’global block’, and creating a ’global scope’.

5.2.3 Variable Scope

Variables are in scope only within their own block. In the example in
Section 5.2.1, z is declared within the braces. Variables declared within
blocks last only within lifetime of that block. If we attempted to access z

outside of this block, this would cause an error to occur.

Variables are constructed, that is, stored in memory when they are first
encountered in their scope, and destructed at the end of the scope in the
reverse order they were encountered in.

1This is usually between two curly braces{}

30

5.2.4 Function Scope

Function definitions define a new block, which each have their own scope.
Function definitions have access to any variables within their surrounding
scope, however anything defined in the function definition’s block is not
accessible in the surrounding blocks. Variables defined in a parameter list
belong to the definition-scope of the function.

5.2.5 Control Flow Scope

Control flow also introduces a new block with its own scope. Variables
initialized in any control flow statement, that is within the parenthesis
before the block, belong to the control flow block and are not accessible in
the surrounding block. In the statement for (var x = 0 to 5) { ... }, x only
exists within that for loop and destructed after the loop ends.

5.3 Namespaces

1. Namespaces are essentially blocks that allow identifiers to be prefix
with an arbitrary nesting of names. They are declared with the
namespace keyword, followed by several identifiers delimited by a dot ‘.’
symbol.

2. Accessing variables and functions inside of a namespace must have the
name of the namespace prefixed before the name of the desired
identifier.

3. The namespaces lib and compiler is reserved for use by standard library
implementations and the compiler.

5.4 if

If statements are used to make decisions in control flow. The syntax for an
if statement is as follows:

31

if (expression)

statement

else

alternative statements

Variations on this syntax are permitted. For example, the else block of the
if statement is optional. If the expression is evaluated and returns true,
then the first portion of the if statement is executed. Otherwise, if there is
an else the portion after it is executed, and if there is none then the function
continues at the next statement. Parenthesis are optional after the if block
if there is a single statement. If there are multiple statements, parenthesis
are needed.

Variables can be initialized inside the expression portion of the if statement
as long as the final expression in a semi-colon delimited list evaluates to a
Boolean value.

if (var x = 20; var y = 50; x < y) {

statements

}

The scope for variables x and y is within that particular if statement.

If statements can also be nested so that multiple conditions can be tested.
For example,

1 i f (x < 0)
2 y = −1
3 e l s e i f (x > 0)
4 y = 1
5 e l s e
6 y = 0

5.5 switch

Switch statements can be used as an alternative to a nested if statement.
The general structure of a switch statement is as follows:

32

switch (variable) {

case (constant expression):

statements

end;

case (constant expression):

statements

end;

case (constant expression):

statements

end;

default: statements

}

The variable is compared against the constant expression for each case, and
if it is equal to this expression then the statements in that case are executed.
If the variable does not match any of the cases then the default case is
executed. The statements in each case must be followed by an end

statement.

As with if statements, if a variable is declared within the switch like
switch (var x = other variable; x) { ... }, the scope for variable x is within that
particular switch block.

5.6 while

While loops are used to repeat a block of code until some condition is met.
The general structure of a while loop is as follows:

while (condition) {

statements

}

The condition is an expression that is evaluated on each iteration of the
loop. If condition evaluates to a non-zero value then the statements in the
loop block are executed, and then condition re-evaluated to determine if
execution should continue in the while loop or not. As soon as condition
evaluates to zero then execution continues outside the while loop.

33

A while loop can support expressions that are more complex that a single
expression. A while loop that looks like while (var x = 20; x <30) { ...} is a
valid while loop. The scope for variable x is within that particular while
block.

An important point when using a while loop is that the statements should
affect the value of the variable being evaluated in the condition in order to
leave the loop, as in the example below. Other than that, a break or
continue statement must be used. This will be discussed in Section 5.8.

1 whi le (var x = 1 ; x <= 10) {
2 ar r [x] = 1 ;
3 x = x + 1 ;
4 }

5.7 for

For loops are another way to repeat a group of statements multiple times.
The general structure resembles the following:

for (variable = lower_bound to upper_bound by size) {

statements

}

The by keyword and argument size are optional and used to specify how
much the variable should change by each iteration of the loop. For example,
for (x = 1 to 10 by 2) { ... } will increment x by two each iteration rather than
the default value of 1. Variables can be declared in the loop declaration, as
in for (var x = 1 to 10) { ... }. For loops can also be used to decrement by
swapping the positions of the lower bound and upper bound arguments,
and using a negative value for the size (if using the by keyword).

The while loop in Section 5.6 could be expressed as a for loop as follows.

1 f o r (var x = 1 to 10) {
2 ar r [x] = 1 ;
3 }

34

C-style for loops are also supported, as in

1 f o r (var x = 1 ; x <= 10 ; x++) {
2 ar r [x] = 1 ;
3 }

5.8 break and continue

Break and continue statements are used to exit a loop immediately, before
the specified condition has been reached. Break statements are used as
follows:

1 whi le (. . .) {
2 statements above
3 break ;
4 statements below
5 }

In the example above, statements above would be executed only once. The
statements below would never be executed. Break statements are usually
included inside of an if statement within the loop to immediately exit on a
particular condition.

Continue statements jump to the end of the loop body and begin the next
iteration. The statements below the continue are not executed, and the
loop condition is immediately reevaluated.

1 f o r (. . .) {
2 statements above
3 i f (c ond i t i on) {
4 cont inue ;
5 }
6 statements below
7 }

In the example above, statements above would always be executed. The
statements below would be executed on iterations where the if condition

35

was false, since if the if condition were true execution would jump back to
the top of the for loop.

Break statements can be used to exit nested loops by jumping out of
multiple scopes by adding an integer value after the break keyword.

1 f o r (. . .) {
2 f o r (. . .) {
3 statements above
4 i f (c ond i t i on)
5 break 2 ;
6 statements below
7 }
8 }

The example above will allow the user to break out of both for loops with
only one break statement.2

2This could be considered a ”poor man’s goto” and should be used with the programmer’s
utmost discretion.

36

Chapter 6

Parallel Execution

Since a large number of elementary operations in the realm of image
processing are embarrassingly parallel matrix operations, the LéPiX
language supports a simple parallelization scheme.

6.1 Parallel Execution Model

1. Parallel Execution is when two computations defined by the language
are run at the exact same time by the abstract virtual machine,
capable of accessing the same memory space.

2. The primary parallel primitive is parallel-marked loops. Most parallel
work is fundamentally loopable work.

3. Use of parallel primitives does not guarantee parallel execution:
computation specified to run in parallel may run sequentially.1

6.2 Syntax

1. The syntax for a parallelized loop is a simple extension to all loop
syntax. In order to parallelize a loop, the keyword parallel can be

1This could be due to hardware limitations, operating system limitations, and other
factors.

37

added before the keywords for or while in the loop statement.

2. In the situation where there are variables that must be shared by all
the threads, a comma separated list of variable identifiers can be
specified in parentheses using the keyword shared as in
parallel (thread count = n) shared(... shared list ...) for | while.

3. In the case of nested for loops, only the outermost loop carrying the
parallel keyword is parallel.

6.3 Threads

1. When a for-loop or while-loop is specified as ”parallel”, the compiler
uses the range of indices in the for loop and divides this range into
equal shares based on how many cores are available on the machine.
Each share is assigned to a thread, which executed the statements
within the loop for its assigned range of indices.

2. Each thread that is spawned in this way will have its own scope,
which is created when the thread is spawned and destroyed when the
thread is killed.

3. Each thread has its own copy of each variable that is declares within
the scope of the loop statements.

4. In the case when variables are marked with the shared or atomic

variables, the load splitting occurs similarly among threads, but the
variables marked shared are locked using a binary semaphore. In this
way, the threads will acquire locks on a shared variable, perform
read/write operations and then release the lock so that other threads
may acquire the locks.2

2A simple example use case for shared variables is the parallel summing of an array
of values. The accumulator variable which will hold the final sum must be shared among
threads and will therefore have to be read from and written to in an atomic manner.

38

Part III

Grammar Specification

39

Chapter 7

Grammar

7.1 Lexical Definitions and Conventions

A program consists of one or more translation units, which are translated in
two phases, namely the preprocessing step and the lexing step. The
preprocessing step entails carrying out directives which begin with # in a
C-like style. The lexing step reduces the program to a sequence of tokens.

7.1.1 Tokens

1. Tokens belong to categories. These are whitespace, keywords,
operators, integer literals, floating point literals, string literals,
identifiers, and brackets.

2. Whitespace tokens are used to separate other tokens and are ignored
in any case where they do not occur between other non-whitespace
tokens.

7.1.2 Comments

1. Comments come in two flavors: single-line and multi-line.

2. Single line comment begin with // and continue until the next newline
character is found. Multi-line comments begin with /* and end with

40

*/. They are nested.

3. Comments are treated as whitespace tokens, but for various purposes
may still appear between other whitespace tokens in a program’s
token stream.

7.1.3 Identifiers

1. Identifiers are composed of letters, numbers and the underscore
character () but must begin with a letter. Identifiers beginning with
underscores and numbers will be reserved for use within the
implementation of the language.

7.1.4 Keywords

1. A set of identifiers has been reserved for use as keywords and cannot
be used in other cases. The list of keywords is in the table below.

int float void bool

unit char codepoint string

vector matrix vector vec

var let if else

for while by to

return true false mutable

const fun struct maybe

protected public private shared

as of parallel atomic

7.1.5 Literals

1. Literals are of three types: integer literals, floating literals, and string
literals, as detailed in 2.2.1. All of them use the following definitions
for their digits:

〈decimal-digit〉 ::= one of
0 1 2 3 4 5 6 7 8 9

41

〈hexidecimal-digit〉 ::= one of
0 1 2 3 4 5 6 7 8 9
A B C D E F
a b c d e f

〈binary-digit〉 ::= one of
0 1

〈octal-digit〉 ::= one of
0 1 2 3 4 5 6 7

〈n-digit〉 ::= one of
0 1 2 3 4 5 6 7 8 9
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
‘ ’

〈decimal-digit-sequence〉 ::= 〈〉
| 〈decimal-digit〉 〈decimal-digit-sequence〉

〈binary-digit-sequence〉 ::= 〈〉
| 〈binary-digit〉 〈binary-digit-sequence〉

〈octal-digit-sequence〉 ::= 〈〉
| 〈octal-digit〉 〈octal-digit-sequence〉

〈hexidecimal-digit-sequence〉 ::= 〈〉
| 〈hexidecimal-digit〉 〈hexidecimal-digit-sequence〉

〈n-digit-sequence〉 ::= 〈〉
| 〈n-digit〉 〈n-digit-sequence〉

2. Integer literals consist of sequences of digits are always interpreted as
decimal numbers. They can be represented by the following lexical
compositions:

〈integer-literal〉 ::= 〈decimal-literal〉
| 〈binary-literal〉
| 〈octal-literal〉
| 〈hexidecimal-literal〉
| 〈n-digit-literal〉

〈decimal-literal〉 ::= 〈decimal-digit-sequence〉

42

〈binary-literal〉 ::= 0b 〈binary-digit-sequence〉
| 0B 〈binary-digit-sequence〉

〈octal-literal〉 ::= 0c 〈octal-digit-sequence〉
| 0C 〈octal-digit-sequence〉

〈hexidecimal-literal〉 ::= 0x 〈hexidecimal-digit-sequence〉
| 0X 〈hexidecimal-digit-sequence〉

〈n-digit-literal〉 ::= 0n 〈n-digit-sequence〉 ‘#’
| 0N 〈n-digit-sequence〉

3. Floating point literals can be specified using digits and a decimal
points or in scientific notation. The following regular expression
represents the set of acceptable floating-point constants.

〈e-part〉 ::= e 〈+ |–˝ -〉 〈integral-literal〉

〈floating-literal〉 ::= 〈integral-literal〉opt . 〈integral-literal〉opt
〈e-part〉opt

| 〈integral-literal〉 .opt 〈integral-literal〉opt 〈e-part〉

4. String literals are sections of quote-delimited items. They are defined
as follows:

〈single-quote〉 ::= ’

〈double-quote〉 ::= ”

〈raw-specifier〉 ::= Ropt

〈character〉 ::= 〈escape-character〉 〈source-character〉

〈character-sequence〉 ::= 〈〉
| 〈character〉 〈character-sequence〉

〈string-literal〉 ::= 〈raw-specifier〉 〈double-quote〉
〈character-sequence〉 〈double-quote〉

| 〈raw-specifier〉 〈single-quote〉 〈character-sequence〉 〈single-quote〉

7.2 Expressions

The following sections formalize the types of expressions that can be used in
a LéPiX program and also specify completely, the precedence of operators

43

and left or right associativity.

7.2.1 Primary Expression

〈primary expression〉 ::= 〈identifier〉
| 〈integer-constant〉
| 〈float-constant〉
| (expression)

1. A primary expression are composed of either a constant, an identifier,
or an expression in enclosing parentheses.

7.2.2 Postfix Expressions

〈postfix expression〉 ::= 〈primary expression〉
| 〈postfix expresion〉 (argument list)
| 〈postfix expression〉 [expression]
| 〈postfix expression〉 . identifier 〈argument list〉 ::= 〈〉
| 〈argument list〉 , 〈postfix expression〉

1. A postfix expression consist of primary expression followed by postfix
operators. The operators in postfix expressions are left-associative.

Array Indexing

Array indexing consists of a postfix expression, followed by an expression
enclosed in square brackets. The expression in the brackets must evaluate to
an integer which will represent the index to be accessed. The value returned
by indexing is the value in the array at the specified index.

Function Calls

A function call is a postfix expression (representing the name of a defined
function) followed by a (possibly empty) list of arguments enclosed in

44

parentheses. The list of arguments is represented as a comma separated list
of postfix expressions.

Structure access

The name of a structure followed by a dot and an identifier name is a
postfix expression. The value of the expression is the value of the named
member of the structure that is being accessed.

7.2.3 Unary Expression

A unary expression consists of postfix expression preceded by a unary
operator (- ,̃ , !, * ,&). Expressions with unary operations are
left-associative. The unary operation is carried out after the postfix
expression has been evaluated.

〈unary operator〉 ::= ˜
!
*

〈unary expression〉 ::= 〈unary operator〉 〈postfix expression〉

The function of each unary operator has been summarized in the table
below:

- Unary minus

˜ Bitwise negation operator

ˆ Logical negation operator

* Indirection operator

7.2.4 Casting

The LéPiX language supports the casting of an integer to a floating point
value and vice versa. It also supports casting of an integer value to a

45

boolean value and vice versa. Integer to float casting creates a floating point
constant with the same value as the integer. Casting a floating point value
to an integer rounds down to the nearest integral value. Casting a boolean
value to an integer gives 1 if the value is true and 0 if it is false. Casting an
integer to a boolean value yields false if the value is 0 and true otherwise.

〈cast expression〉 ::= 〈unary expression〉
| 〈unary expression〉 as 〈type name〉

7.2.5 Multiplicative Expressions

The multiplication (*), division (/) and modulo (%) operators are left
associative.

〈multiplicative expression〉 ::= 〈cast expression〉
| 〈multiplicative expression〉 * 〈cast expression〉
| 〈multiplicative expression〉 / 〈cast expression〉
| 〈multiplicative expression〉 % 〈cast expression〉

7.2.6 Additive Expressions

The addition (+) and subtraction (-) operators are left associative.

〈additive expression〉 ::= 〈multiplicative expression〉
| 〈additive expression〉 + 〈cast expression〉
| 〈additive expression〉 - 〈cast expression〉

7.2.7 Relational Expressions

The relational operators less than (¡), greater than (¿), less than or equal to
(¡=) and greater than or equal to (¿=) are left associative.

〈relational expression〉 ::= 〈additive expression〉
| 〈relational expression〉 〈 ¡additive expression〉

46

| 〈relational expression〉 〈= ¡additive expression〉
| 〈relational expression〉 ¿ 〈additive expression〉
| 〈relational expression〉 ¿= 〈additive expression〉

7.2.8 Equality Expression

〈equality expression〉 ::= 〈relational expression〉
| 〈equality expression〉 != 〈relational expression〉
| 〈equality expression〉 == 〈relational expression〉

7.2.9 Logical AND Expression

The logical and operator (&&) is left associative and returns true if both its
operands are not equal to false.

〈logical and expression〉 ::= 〈equality expression〉
| 〈logical and expression〉 && 〈equality expression〉

7.2.10 Logical OR Expression

The logical OR operator (——) is left associative and returns true if either
of its operands are not equal to false.

〈logical or expression〉 ::= 〈logical and expression〉
| 〈logical or expression〉 || 〈logical and expression〉

7.2.11 Assignment Expressions

The assignment operator (=) is left associative.

〈assignment expression〉 ::= 〈logical or expression〉
| 〈unary expression〉 = 〈assignment expression〉

47

7.2.12 Assignment Lists

Assignment lists consist of multiple assignment statements separated by
commas.

〈assignment list〉 ::= 〈assignment expression〉
| 〈assignment list〉 ::= 〈assignment list〉 , 〈assignment expression〉

7.2.13 Declarations

Declarations of a variable specify a type for each identifier and a value to be
assigned to the identifier. Declarations do not always allocate memory to be
associated with the identifier.

〈declaration〉 ::= let 〈storage class〉 〈identifier〉 : 〈type name〉 =
〈postfix expression〉

| var 〈storage class〉 〈identifier〉 : 〈type name〉 = 〈postfix expression〉
| 〈declaration〉 〈array〉

〈storage class〉 ::= mutable
| const

〈type name〉 ::= void
| unit
| bool
| int
| float
| 〈type name〉 〈array〉

〈array〉 ::= [〈int list〉]
| [〈array〉]

〈int list〉 ::= 〈integer〉 | 〈int list〉 , 〈integer〉

7.2.14 Structure Declaration

Structures are declared by specifying the identifier and then an initialization
list of the member variables.

48

〈structure declaration〉 ::= struct 〈identifier〉 { 〈init list〉 }

7.2.15 Function Declaration

Function declarations consist of the keyword fun followed by an identifier
and a list of parameters enclosed in parentheses. The list of arguments is
followed by a colon and a type name which represents the return type for
the function. The arguments list is specified as a comma-separated list of
identifier, type pairs.

〈function declaration〉 ::= fun 〈identifier〉 (〈params list〉) : 〈type name〉

〈params list〉 ::= 〈 〉
| 〈identifier〉 : 〈type name〉
| 〈params list〉 , 〈identifier〉 : 〈type name〉

7.3 Statements

Statements are executed sequentially in all cases except when explicit
constructs for parallelization are used. Statements do not return values.

〈statement〉 ::= 〈expression statement〉
| 〈branch statement〉
| 〈compound statement〉
| 〈iteration statement〉
| 〈return statement〉

7.3.1 Expression Statements

Expression statements are either empty or consist of an expression. These
effects of one statement are always completed before the next is executed.
This guarantee is not valid in cases where explicit parallelization is used.
Empty expression statements are used for loops and if statements where not
action is to be taken.

49

〈expression statement〉 ::= 〈 〉
| 〈expression〉 ;

7.3.2 Statement Block

A statement block is a collection of statements declarations and statements.
If the declarations redefine any variables that were already defined outside
the block, the new definition of the variable is considered for the execution
of the statements in the block. Outside the block, the old definition of the
variable is restored.

〈block〉 ::= { 〈compound statement〉 }
| { 〈block〉 〈compound statement〉}

〈compound statement〉 ::= 〈declaration〉
| 〈statement〉
| 〈compound statement〉 ; 〈declaration〉
| 〈compound statement〉 ; 〈statement〉

Branch Statements

Branch statement are used to select one of several statement blocks based
on the value of an expression.

〈branch statement〉 ::= if (〈expression〉) 〈statement〉 fi
| if (〈expression〉) 〈statement〉 else 〈statement〉 fi

7.3.3 Loop Statements

Loop statements specify the constructs used for iteration.

〈loop statement〉 ::= while (〈expression〉) 〈statement〉
| for (〈identifier〉 = 〈expression〉 to 〈expression〉)
| for (〈assignment expression〉 = 〈expression〉 to 〈expression〉 by
〈expression〉)

50

| parallel for (〈assignment expression〉 = 〈expression〉 to 〈expression〉)
| parallel for (〈assignment expression〉 = 〈expression〉 to 〈expression〉

by 〈expression〉)
| parallel shared(〈identifier list〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉)

| parallel shared(〈identifier list〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉 by 〈expression〉)

| parallel threads(〈expression〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉)

| parallel threads(〈expression〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉 by 〈expression〉)

| parallel threads(〈expression〉) shared(〈identifier list〉) for (
〈assignment expression〉 = 〈expression〉 to 〈expression〉)

| parallel threads(〈expression〉) shared(〈identifier list〉) for (
〈assignment expression〉 = 〈expression〉 to 〈expression〉 by
〈expression〉)

〈identifier list〉 ::= 〈identifier〉
| 〈identifier list〉 , 〈identifier〉

7.3.4 Jump Statements

Jump statements are used to break out of a loop or to skip the current
iteration of a loop.

〈jump statement〉 ::= break
| continue

7.3.5 Return Statements

Return statements are used to denote the end of function logic and the also
to specify the value to be returned by a call to the function in question.

〈return statement〉 ::= return
| return 〈expression〉

51

7.4 Function Definitions

Function definitions consist of a function declaration followed by a
statement block.

〈function definition〉 ::= 〈function declaration〉 〈block〉

7.5 Type Conversions

Implicit type conversions are carried out only for compatible types. The
implicit casting occurs during assignment or when a value is passed as a
function argument. The four types of conversions that are supported are
summarized in the table below.

Int to Float Float variable has the same value as integer

Float to Int Integer has largest integral value less than the float

Bool to Int Integer has value 1 if true else 0

Int to Bool Bool is true if Int is not equal to 0 and false otherwise

7.6 Scope

The scope of a variable is defined as the statement block within which the
variable has been declared. If a variable with a particular identifier has been
declared and the identifier is re-used within a nested block, the original
definition of the identifier is suspended and the new one is used until the
end of the block.

7.7 Preprocessor

Before the source for a LePix program is compiled, the program is consumed
by a preprocessor, which expands macro definitions and links libraries and
other user-defined to the current file, as specified by appropriate
preprocessor directives. We support define macros and import macros.

52

Define macros create an alias for a value or expression, while ifdef and ifndef
macros are used to check if a particular alias has already been assigned.
Import directives are used to link files/libraries with the current program.

〈preprocessor directive〉 ::= #define 〈identifier〉 〈expression〉
| #ifdef 〈identifier〉
| #ifndef 〈identifier〉
| #import ”file˙name”
| #import “〈file name〉”
| #import ''〈file name〉''
| #import string 〈file name〉
| #endif

7.8 Grammar Listing

〈primary expression〉 ::= 〈identifier〉
| 〈integer-constant〉
| 〈float-constant〉
| (expression)

〈postfix expression〉 ::= 〈primary expression〉
| 〈postfix expresion〉 (argument list)
| 〈postfix expression〉 [expression]
| 〈postfix expression〉 . identifier 〈argument list〉 ::= 〈〉
| 〈argument list〉 , 〈postfix expression〉

〈unary operator〉 ::= ˜
!
*

〈unary expression〉 ::= 〈unary operator〉 〈postfix expression〉

〈cast expression〉 ::= 〈unary expression〉
| 〈unary expression〉 as 〈type name〉

〈multiplicative expression〉 ::= 〈cast expression〉
| 〈multiplicative expression〉 * 〈cast expression〉

53

| 〈multiplicative expression〉 / 〈cast expression〉
| 〈multiplicative expression〉 % 〈cast expression〉

〈additive expression〉 ::= 〈multiplicative expression〉
| 〈additive expression〉 + 〈cast expression〉
| 〈additive expression〉 - 〈cast expression〉

〈relational expression〉 ::= 〈additive expression〉
| 〈relational expression〉 〈 ¡additive expression〉
| 〈relational expression〉 〈= ¡additive expression〉
| 〈relational expression〉 ¿ 〈additive expression〉
| 〈relational expression〉 ¿= 〈additive expression〉

〈equality expression〉 ::= 〈relational expression〉
| 〈equality expression〉 != 〈relational expression〉
| 〈equality expression〉 == 〈relational expression〉

〈logical and expression〉 ::= 〈equality expression〉
| 〈logical and expression〉 && 〈equality expression〉

〈logical or expression〉 ::= 〈logical and expression〉
| 〈logical or expression〉 || 〈logical and expression〉

〈assignment expression〉 ::= 〈logical or expression〉
| 〈unary expression〉 = 〈assignment expression〉

〈assignment list〉 ::= 〈assignment expression〉
| 〈assignment list〉 ::= 〈assignment list〉 , 〈assignment expression〉

〈declaration〉 ::= let 〈storage class〉 〈identifier〉 : 〈type name〉 =
〈postfix expression〉

| var 〈storage class〉 〈identifier〉 : 〈type name〉 = 〈postfix expression〉
| 〈declaration〉 〈array〉

〈storage class〉 ::= mutable
| const

〈type name〉 ::= bool
| int
| float
| 〈type name〉 〈array〉

54

〈array〉 ::= [〈int list〉]
| [〈array〉]

〈int list〉 ::= 〈integer〉 | 〈int list〉 , 〈integer〉

〈structure declaration〉 ::= struct 〈identifier〉 { 〈init list〉 }

〈function declaration〉 ::= fun 〈identifier〉 (〈params list〉) : 〈type name〉

〈params list〉 ::= 〈 〉
| 〈identifier〉 : 〈type name〉
| 〈params list〉 , 〈identifier〉 : 〈type name〉

〈statement〉 ::= 〈expression statement〉
| 〈branch statement〉
| 〈compound statement〉
| 〈iteration statement〉
| 〈return statement〉

〈expression statement〉 ::= 〈 〉
| 〈expression〉 ;

〈block〉 ::= { 〈compound statement〉 }
| { 〈block〉 〈compound statement〉}

〈compound statement〉 ::= 〈declaration〉
| 〈statement〉
| 〈compound statement〉 ; 〈declaration〉
| 〈compound statement〉 ; 〈statement〉

〈branch statement〉 ::= if (〈expression〉) 〈statement〉 fi
| if (〈expression〉) 〈statement〉 else 〈statement〉 fi

〈loop statement〉 ::= while (〈expression〉) 〈statement〉
| for (〈identifier〉 = 〈expression〉 to 〈expression〉)
| for (〈assignment expression〉 = 〈expression〉 to 〈expression〉 by
〈expression〉)

| parallel for (〈assignment expression〉 = 〈expression〉 to 〈expression〉)
| parallel for (〈assignment expression〉 = 〈expression〉 to 〈expression〉

by 〈expression〉)
| parallel shared(〈identifier list〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉)

55

| parallel shared(〈identifier list〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉 by 〈expression〉)

| parallel threads(〈expression〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉)

| parallel threads(〈expression〉) for (〈assignment expression〉 =
〈expression〉 to 〈expression〉 by 〈expression〉)

| parallel threads(〈expression〉) shared(〈identifier list〉) for (
〈assignment expression〉 = 〈expression〉 to 〈expression〉)

| parallel threads(〈expression〉) shared(〈identifier list〉) for (
〈assignment expression〉 = 〈expression〉 to 〈expression〉 by
〈expression〉)

〈identifier list〉 ::= 〈identifier〉
| 〈identifier list〉 , 〈identifier〉

〈jump statement〉 ::= break
| continue

〈return statement〉 ::= return
| return 〈expression〉

56

	I Introduction
	Tutorial
	Hello, World!
	Variables and Declarations
	Variables
	Mutability

	Control Flow
	Functions
	Defining and Declaring Functions
	Parameters and Arguments

	II Reference Manual
	Expressions, Operations and Types
	Variable Names and Identifiers
	Identifiers

	Literals
	Kinds of Literals
	Boolean Literals
	Integer Literals
	Floating Literals
	String Literals

	Variable Declarations
	let and var declarations

	Initialization
	Variable Initialization
	Assignment

	Access
	Member Access
	Member Lookup

	Parenthesis
	Arithmetic Expressions
	Binary Arithmetic Operations
	Unary Arithmetic Operations

	Incremental Expressions
	Incremental operations

	Logical Expressions
	Binary Compound Boolean Operators
	Binary Relational Operators
	Unary Logical Operators

	Bitwise Operations
	Binary Boolean Operators

	Operator and Expression Precedence
	Expression and Operand Conversions
	Boolean Conversions
	Mathematical Conversions

	Functions
	Functions and Function Declarations
	Function Definitions
	Function Declarations
	Function Scope and Parameters

	Data Types
	Data Types
	Primitive Data Types
	Derived Data Types

	Program Structure and Control Flow
	Statements
	Blocks and Scope
	Blocks
	Scope
	Variable Scope
	Function Scope
	Control Flow Scope

	Namespaces
	if
	switch
	while
	for
	break and continue

	Parallel Execution
	Parallel Execution Model
	Syntax
	Threads

	III Grammar Specification
	Grammar
	Lexical Definitions and Conventions
	Tokens
	Comments
	Identifiers
	Keywords
	Literals

	Expressions
	Primary Expression
	Postfix Expressions
	Unary Expression
	Casting
	Multiplicative Expressions
	Additive Expressions
	Relational Expressions
	Equality Expression
	Logical AND Expression
	Logical OR Expression
	Assignment Expressions
	Assignment Lists
	Declarations
	Structure Declaration
	Function Declaration

	Statements
	Expression Statements
	Statement Block
	Loop Statements
	Jump Statements
	Return Statements

	Function Definitions
	Type Conversions
	Scope
	Preprocessor
	Grammar Listing

