
LaTenS Language Reference Manual

Authors:
Mohit Rajpal

Daniel Schwartz
Elsbeth Turcan
Eliana Ward-Lev

October 26, 2016

Contents

1 Introduction 2
1.1 Motivation and Introduction to Tensors . 2
1.2 Language Description . 2

2 Lexical Conventions 2
2.1 Tokens . 2
2.2 Comments . 3
2.3 Identifiers . 3
2.4 Key Words . 4

3 Data Types 4
3.1 Declaration . 4
3.2 Tensor . 5
3.3 Float . 5
3.4 String Literals . 6
3.5 Void . 6

4 Expressions and Operators 6
4.1 Unary Operators . 8
4.2 Binary Arithmetic Operators . 8
4.3 Assignment Operator . 9
4.4 Relational Operators . 9
4.5 Order of Evaluation . 9

5 Structure 10
5.1 Statements . 10
5.2 Expression . 12
5.3 Statement . 12
5.4 Block Statement . 12
5.5 True and False . 12
5.6 If-then-else . 12
5.7 Loops . 12
5.8 Function definition . 13
5.9 Scoping . 13
5.10 Program . 13

1

1 Introduction

1.1 Motivation and Introduction to Tensors

“Pure mathematics is, in its way, the poetry of logical ideas.” - Albert Einstein

“Tensors are mathematical objects that can be used to represent real-world systems. [...] Tensors have
proven to be useful in many engineering contexts, in fluid dynamics, and for the General Theory of Relativ-
ity. Knowledge of tensor math [...] also is useful in the fields of financial analysis, machine [learning], and in
the analysis of other complex systems.” [1]

Tensors are essentially the generalization of a matrix or vector to arbitrary rank. Rank refers to the number
of indices needed to label a component of that tensor. For example, a scalar is a rank zero tensor, a vector
is a rank one tensor and a matrix is a rank two tensor.
Indices are used to denote a particular element of a tensor. For example, the formula to find the eigenvectors
of a matrix M is M00 M01 M02

M10 M11 M12

M20 M21 M22

v0v1
v2

 = λ

v0v1
v2

Using index notation, the eigenvector formula becomes

3∑
j=0

Mijvj = λvi

Einstein summation convention allows for dropping of the sign

Mijvj = λvi

Note that Einstein summation follows a simple rule: any pair of indices with the same symbol implies
summation. Also note that any index without a pair must also apear on the other side of the equality (here
i).

1.2 Language Description

LaTenS is a language that strives to make calculations with tensors as simple as possible. We follow and
extend the customs of MATLAB, generalizing a matrix-manipulation language to manipulate n-dimensional
tensors. The syntax is intended to evoke traditional mathematical syntax for operating on tensors—for
example, when composing in LATEX, a tensor Ta,b can be created by typing T {a,b}, so this syntax is likely
familiar to mathematicians.

LaTenS uses this kind of syntax to make problems involving tensor manipulation quick and intuitive, with
built-in operations on n-dimensional tensors without the need to loop over elements in the tensors (as in
other programming languages).

2 Lexical Conventions

2.1 Tokens

A LaTenS program is parsed into tokens according to the following scanner. Most important are the opera-
tors, and then the reserved keywords. Comments and whitespace are ignored (except to separate tokens).

[' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| "%{" { comment lexbuf } (* Block comments *)

| '%' { singlecomment lexbuf } (* Single-line comments *)

| '(' { LPAREN }

2

| ')' { RPAREN }

| '[' { LBRACKET }

| ']' { RBRACKET }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ',' { COMMA }

| '_' { UNDER }

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

| '^' { CONCAT }

| "==" { EQ }

| '=' { ASSIGN }

| "~=" { NEQ }

| '<' { LT }

| "<=" { LEQ }

| '>' { GT }

| ">=" { GEQ }

| "&&" { AND }

| "||" { OR }

| '~' { NOT }

| "else" { ELSE }

| "float" { FLOAT }

| "for" { FOR }

| "if" { IF }

| "let" { LET }

| "return" { RETURN }

| "string" { STRING }

| "tensor" { TENSOR }

| "while" { WHILE }

2.2 Comments

LaTenS supports single line comments

% Single Line Comment

and block comments over multiple lines

%{ Block Comment %}

Comments may not be nested, although the two types may be combined.

%{

% This comment structure is also valid,

% Although really everything inside a block comment is ignored,

% So the single-line comments are not actually being recognized.

%}

2.3 Identifiers

An identifier name must be a letter (uppercase or lowercase) followed by any number of uppercase or
lowercase letters and digits. No other characters may be included in an identifier; note that in particular,

3

programmers may expect the underscore () to be a legal identifier character, but see Section 3.2 (Tensor)
for an explanation of why the underscore character is reserved.

2.4 Key Words

No identifier name can be a keyword reserved by the system. The following words are used elsewhere (control
flow, for example) and are reserved:

• else

• float

• for

• if

• let

• return

• string

• tensor

• while

Reserved words are case-sensitive, so for example “If” is a valid identifier name.

3 Data Types

typ: FLOAT { Float }

| STRING { String }

| VOID { Void }

| ID UNDER LBRACE qual_list { TensorType($4) }

var_typ: FLOAT { Float }

| STRING { String }

| ID UNDER LBRACE qual_list { TensorType($4) }

LaTenS is statically typed with hybrid type-checking, following the conventions of Swift or GO. This implies
that variable types are inferred, but function return value must specified.

Every variable has a type (rank n tensor or string) and can be used in assignment as long as the right-
hand side is of the same type (that is, typing is not dynamic; if a variable already has a type, it cannot be
changed by assignment). In particular, this means that when assigning to a tensor, the expression on the
right-hand side must have the same rank as the tensor variable, although the size of each dimension and
which indices are up and down may vary.

3.1 Declaration

vdecl: LET ID UNDER LBRACE qual_list SEMI { TensorBind($2,$5)}
| LET ID UNDER LBRACE qual_list ASSIGN expr SEMI { TensorBindAndAssign($2, $5, $7) }

| LET ID ASSIGN expr SEMI { InferredBind($2, $4) }

| LET ID SEMI { ($2) }

4

To declare a variable, use the keyword let. A variable can be declared only, or declared and assigned a
value at the same time. The let keyword is used to differentiate declaration with assignment from just
assignment, since without let, assignment would look the same with or without declaring a new variable
(which could lead to hard-to-catch bugs). To illustrate declaration,

let T_{a,b,c};

let b = 10.5;

let myT_{a} = (3,)

are all valid declarations: the first declares a rank three tensor T (with no set values or dimensions), the
second declares a floating-point number(scalar) and gives it the value 10.5, and the third declares a rank 1
tensor of size three (this implicitly sets all values to 0). The declarations for each data type and details on
float and string literals are given in more detail below.

Only one variable can be declared per declaration; that is, each new variable must have its own let keyword.
Variables which have not been initialized cannot be used.

3.2 Tensor

tensorimmediate: LBRACKET ten_list RBRACKET { TenDim($2) }

| LBRACKET ten_expr_list RBRACKET { ExprDim($2) }

Tensors can have any rank. To declare a tensor, an identifier name must be used followed by an underscore
() and in braces dummy indices separated by commas. The total number of dummy indices represents the
rank. If there are no indices, it is a rank 0 tensor or a scalar and will be interpreted as a float(see 3.3).

qual_list: SLITERAL RBRACE { [$1] }

| SLITERAL COMMA qual_list { $1 :: $3 }

qual_list_expr: LPAREN expr RPAREN RBRACE { [$2] }

| FLITERAL RBRACE { Float($1) }

| SLITERAL RBRACE { String($1) }

| LPAREN expr RPAREN COMMA qual_list_expr { $2::$5 }

| FLITERAL COMMA qual_list_expr { $1::$3 }

| SLITERAL COMMA qual_list_expr { $1::$3 }

To define a tensor, one can use nested square brackets, with the number of nested brackets being the same
as the rank. Each element of the tensor must either be a float or a pre-initialized scalar. Additionally, if one
desires to initialize a tensor with all 0’s, one can use (dim1, dim2, ..., dim n). If the rank is 1 use a
comma after the dimension i.e. (dim1,)
For example, to declare a row vector (rank 1 tensor) vi = (1, 2, 3), and a matrix(rank 2 tensor) M =0 0 0

0 0 0
0 0 0

let v_{i} = [1, 2, 3];

let M_{i,j} = (3, 3);

A tensor’s type includes the rank but not whether indices are up or down or the size of each dimension.

3.3 Float

The floating-point type represents rational numbers. Any number that can be expressed as a terminating
decimal can be expressed as a float in LaTenS.

A floating-point literal consists of an integer part, a decimal point, a fractional part, and an exponent.

5

Either the integer part or the fractional part (along with the decimal point) may be omitted (but not both),
and the exponent is optional and may be optionally signed. This is the same definition of a floating-point
number used by C.[2] All floats are signed; the unary minus (−) must be included to signify a negative
number while the unary plus (+) is optional for convenience.

The following are some examples of assigned floats:

let a = 2;

let b = 1.7;

let c = -0.8

let d = .2

let e = +3.7

let f = 5.2e8

let g = 2e-5

Additionally, every element inside a tensor is also a floating-point number. A scalar is also a floating-point
number.

3.4 String Literals

Similar to C, a string literal is a sequence of zero or more characters, digits, and escapable characters en-
closed within double quotation marks.[3] As our language is geared towards scientific computation involving
tensors, strings are designed to be used solely for debugging. For this reason, certain operations (such as
retrieving the length of a string) are not allowed. Rather, strings are to be constructed, concatenated, and
printed as necessary.

The following are valid escapable characters:

• newline: “\n”

• tab: “\t”

• backslash: “\\”

• single quote ”\'”

• double quote: “\"”

Strings can be concatenated with the ˆ operator. (See section 4.2)

To express a string literal, use double quotes:

let str = "Hello";

str ^ " world!";

will return ”Hello world”

3.5 Void

The void type is unique: no void variable can exist, and no operators operate on a void type, but a function
may have void as a return type. This is simply for the convenience of defining a function that does not
return any value.

4 Expressions and Operators

There are three possible types of expressions - regular expressions (which can be found in statements and so
on); tensor expressions (which can be used inside a tensor immediate–so for example strings are not allowed);

6

and index expressions (which can be used inside tensor indices–so for example tensor immediates are not
allowed).

expr:

SLITERAL { String($1) }

| FLITERAL { Float($1) }

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3) }

| expr CONCAT expr { Binop($1, Concat, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) }

| expr LT expr { Binop($1, Less, $3) }

| expr LEQ expr { Binop($1, Leq, $3) }

| expr GT expr { Binop($1, Greater, $3) }

| expr GEQ expr { Binop($1, Geq, $3) }

| expr AND expr { Binop($1, And, $3) }

| expr OR expr { Binop($1, Or, $3) }

| MINUS expr %prec NEG { Unop(Neg, $2) }

| PLUS expr { $2 (* Unary plus is redundant; ignore it *) }

| NOT expr { Unop(Not, $2) }

| ID { Id($1) }

| ID ASSIGN expr { Assign($1, $3) }

| LPAREN expr RPAREN { $2 }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| ID UNDER LBRACE qual_list_expr { TensorId($1, $4) }

| ID UNDER LBRACE qual_list ASSIGN expr { TensorAssign($1, $4, $6) }

| tensorimmediate { Tensor($1) }

| vdecl { $1 }

ten_expr:

FLITERAL { Float($1) }

| ten_expr PLUS ten_expr { Binop($1, Add, $3) }

| ten_expr MINUS ten_expr { Binop($1, Sub, $3) }

| ten_expr TIMES ten_expr { Binop($1, Mult, $3) }

| ten_expr DIVIDE ten_expr { Binop($1, Div, $3) }

| ten_expr EQ ten_expr { Binop($1, Eq, $3) }

| ten_expr NEQ ten_expr { Binop($1, Neq, $3) }

| ten_expr LT ten_expr { Binop($1, Less, $3) }

| ten_expr LEQ ten_expr { Binop($1, Leq, $3) }

| ten_expr GT ten_expr { Binop($1, Greater, $3) }

| ten_expr GEQ ten_expr { Binop($1, Geq, $3) }

| ten_expr AND ten_expr { Binop($1, And, $3) }

| ten_expr OR ten_expr { Binop($1, Or, $3) }

| MINUS ten_expr %prec NEG { Unop(Neg, $2) }

| PLUS ten_expr { $2 }

| NOT ten_expr { Unop(Not, $2) }

| ID { Id($1) }

| ID ASSIGN ten_expr { Assign($1, $3) }

| LPAREN ten_expr RPAREN { $2 }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LET ID ASSIGN ten_expr { InferredBind($2, $4) }

ind_expr:

FLITERAL { Float($1) }

| SLITERAL { String($1) }

| ind_expr PLUS ind_expr { Binop($1, Add, $3) }

| ind_expr MINUS ind_expr { Binop($1, Sub, $3) }

7

| ind_expr TIMES ind_expr { Binop($1, Mult, $3) }

| ind_expr DIVIDE ind_expr { Binop($1, Div, $3) }

| ind_expr CONCAT ind_expr { Binop($1, Concat, $3) }

| ind_expr EQ ind_expr { Binop($1, Eq, $3) }

| ind_expr NEQ ind_expr { Binop($1, Neq, $3) }

| ind_expr LT ind_expr { Binop($1, Less, $3) }

| ind_expr LEQ ind_expr { Binop($1, Leq, $3) }

| ind_expr GT ind_expr { Binop($1, Greater, $3) }

| ind_expr GEQ ind_expr { Binop($1, Geq, $3) }

| ind_expr AND ind_expr { Binop($1, And, $3) }

| ind_expr OR ind_expr { Binop($1, Or, $3) }

| MINUS ind_expr %prec NEG { Unop(Neg, $2) }

| PLUS ind_expr { $2 }

| NOT ind_expr { Unop(Not, $2) }

| ID { Id($1) }

| ID ASSIGN ind_expr { Assign($1, $3) }

| LPAREN ind_expr RPAREN { $2 }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LET ID ASSIGN ind_expr { InferredBind($2, $4) }

| ID UNDER LBRACE qual_list_expr { TensorId($1, $4) }

4.1 Unary Operators

Operator Description Example

inv(Tensor) invert a tensor
let T a,b = [[1, 2], [3,

4]]; inv(T a,b) returns [[−2,
1],[1.5, −.5]]

rank(Tensor) get rank of tensor let T = 5; rank(T); returns 0

dim(Tensor, Index) get size of a particular dimension
let T a,b = [[1, 2, 3], [3,

4, 5]]; dim(T m,n, m) returns
3.

(underscore)
get element by indices(to index us-
ing a predefined scalar, use ())

let T a,b = [[1, 2, 3], [3,

4, 5]]; a = 2; T 0,0; returns
1 T (a),0; returns 5

+, − optional sign. − negates all in-
dices. + is just cosmetic

let T a = [1, 2, 3]; −T a;

returns [−1, −2, −3]

str() return tensors as string

str(1), let T a,b = [[1, 2,

3], [3, 4, 5]]; str(T aˆbc)

returns "1" "[[1, 2, 3], [3,

4, 5]]"

~ negate the truth value of an ex-
pression

~0 is true and ~1 is false

4.2 Binary Arithmetic Operators

For a binary operation to be performed on two tensors, it is required that [[TODO ??? put in for each op]]

• +

Tensor addition. Examples: T a+T a, T {a} + T {b}
Both tensors must be the same rank if sizes differ we will 0 pad.

• −
Tensor subtraction. Examples: T {a}−T {a}, T {a} − T {b}
Both tensors must be the same rank if sizes differ we will 0 pad.

8

• *(overloaded)
Tensor product. Examples: T {a}*T {a}, T {a, b, c} * T {a}
Each index to be multiplied over must repeat, these must be the same dimension.
Scalar product. Examples: 4*8.2, a*b, T {0, 1}* X {10}
Both must be scalars
Scalar-Tensor product. Examples: 4*T {a}, X {b, c}*T {0}
One must be a scalar, one must be a tensor, order doesn’t matter

• ˆ

String concatenation. Examples: "hello," ˆ " world!"

Both must be strings

• /

Scalar division. Examples: 3/5, a/b, T {0}/T {1}
both must be scalars, the divisor must be non-zero

4.3 Assignment Operator

The single equals (=) is designated as the assignment operator. Assignment is mostly by reference, but
sometimes by value. Only primitive types (i.e., float), are assigned by value. All other types (i.e., tensor
and string) are assigned by reference. During assignment, the types of the left hand side and right hand side
must match. Assignments are expressions, and return the newly assigned value of the left hand side. For a
successful assigment, the type of the right hand side must match the type of the left hand side. For more
detailed rules of type checking see the Types section.

4.4 Relational Operators

Operator Description Example
< scalar less than a < b

<= scalar less than or equal to a <= b

> scalar greater than a > b

>= scalar greater than or equal to a >= b

== equal to a == b

˜= not equal to a ˜= b

LaTenS does not allow strings or tensors to be compared with any less-than or greater-than operators; only
floats can be compared this way because less-than and greater-than requires some total order on the objects
being compared. Floats are compared in the expected way, using their numerical value.

Any type of data can be compared with the two equality operators, as long as both operands are of the same
type (this means that tensors must be of the same rank). Tensors and strings are compared by reference;
floats are compared by value.

An expression involving relational operators is intended to evaluate to a boolean value. Since we do not
implement a boolean type, and we instead consider the empty string and scalars equal to exactly 0.0 to be
false, and all other values to be true, relational expressions must actually return the scalar 0.0 for false or
the scalar 1.0 for true. Use them wisely.

4.5 Order of Evaluation

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left OR

%left AND

9

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE

%right NOT NEG

We follow the example of MATLAB when considering operator precedence. Our operators listed from highest
to lowest precedence are as follows:

1. Parentheses ()

2. Get element of tensor (T {i, j, ...})

3. Unary plus and minus (+, −), logical NOT (~)

4. Tensor multiplication (*), scalar multiplication and division (*, \), tensor-scalar multiplication (*)

5. Addition and subtraction (+, −), string concatenation (ˆ)

6. Relational operators: less than (<), less than or equal to (<=), greater than (>), greater than or equal
to (>=), equal to (==), not equal to (˜=)

7. Logical AND (&&) and OR (||)

8. Assignment (=)

The assignment operator, the logical NOT operator, the unary minus, and the underscore associate from
the right. All other operators are left-associative.

5 Structure

5.1 Statements

stmt: expr SEMI { Expr $1 }

| RETURN SEMI { Return Noexpr }

| RETURN expr SEMI { Return $2 }

| LBRACE stmt_list RBRACE { Block(List.rev $2) }

| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt

{ For($3, $5, $7, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

A statement is either an expression or some compound statement of expressions. An expression evaluates
to a value, meanwhile a compound statement of expressions has no associated value and only defines a side
effect. Every statement must be terminated with a semicolon or enclosed in braces. A statement is the
smallest unit of computation, some examples of expressions are:

[2, 4, 5];

The above value expression has no side effect, but evaluates to an immediate value of [2, 4, 5], a single
dimensional tensor (a vector).

let v_{i} = [2, 4, 5];

The above expression defines a vector variable (single dimensional tensor) and assign it the immediate value
of [2, 4, 5]. The above value expression has both a side effect and an evaluation of [2, 4, 5].

10

s = [2, 4, 5] * [2, 4, 5];

The above value expression performs tensor multiplication between two vectors, [2, 4, 5] and [2, 4, 5], and
assigns the resultant value to the variable s. This will assume that the first index of each is the one summed
over, for vectors this looks like a dot product. The value expression also evaluates to the newly assigned
value of s, which in this case is 45.

v = foo([2, 4, 5]);

The above value expression calls the function foo with a single argument [2, 4, 5]. The above assumes that
foo is a function taking a single argument, a one dimensional lower tensor, and returns a value. The syntax
and semantics of functions will be covered in a later section.

Compound statements that do not evaluate to a value are typically found in code flow constructs, and allow
the flexibility of evaluating to no value in situations where there is no suitable candidate evaluation value.
Some common void expressions are:

if (evalexpr)

{

stmt1

stmt2

...

stmtn

};

The entire if block above is a statement that evaluates to no value, this means the following is illegal:

v = if (evalexpr)

{

...

};

The above is illegal because void is not a value, but rather a guarantee that no value exists. Another common
void expression is found in loops:

for(beginstmt; evalexpr; iterstmt)

{

stmt1

stmt2

...

stmtn

};

Paradoxically, function evaluations can both be an expressions and statement. For example the following
may be illegal:

v = bar([2, 4, 5]);

This depends on the type of a function, which may be void.

Compound statements are limited to loops, if-then-else, expression sequences, and void functions.

11

5.2 Expression

An expression is one of assignment, unary or binary operators applied to expressions, or a non-void function
evaluation.

5.3 Statement

A Statement is one of statement sequences, if-then-else, for loop, or while loop.

5.4 Block Statement

A block statement is a void expression, which comprises of zero or more statements. The syntax for a block
statement is as follows:

{

stmt1;

stmt2;

...

stmtn;

}

5.5 True and False

Boolean types do not exist in LaTenS. There are analogues, however. In particular, only an empty string
and a zero dimensional tensor (a scalar) with the value of +0 or −0 evaluates to False. All other values
evaluate to True.

5.6 If-then-else

An if-then-else comes in two following forms:

if(evalexpr)

stmt1

if(evalexpr)

stmt1

else

stmt2

The semantics of the above is that if evalexpr is evaluated to True, then the if branch is executed. If an else
follows the if, then it is executed only if evalexpr evaluates to False. The execution of stmt1 and stmt2 is
mutually exclusive.

5.7 Loops

The syntax of for loop in LaTenS is as follows:

for(beginstmt; evalexpr; iterstmt)

stmt

The semantics of the above is to execute beginstmt in the prologue, and continuing to execute the loop body
while evalexpr evaluates to True. To be more specific the loop body consists of stmt followed by iterstmt.
Prior to any execution of the loop body, evalexpr must be evaluated and checked to be True.
The syntax for while loops is as follows:

12

while(evalexpr)

stmt

The semantics is to execute stmt as long as evalexpr evaluates to True.

5.8 Function definition

fdecl: typ ID LPAREN formals_opt RPAREN LBRACE stmt_list RBRACE

{ { typ = $1; fname = $2; formals = $4;
body = List.rev $7 } }

The returntype may either be void, or some other concrete type.

5.9 Scoping

Functions and expression sequences intimately interact with scope. Abstractly, a scope is a set of bindings
between identifiers and their underlying meaning. In particular each expression sequence defines a container
of mappings of identifiers to their meaning (a scope).
During the evaluation of an expression sequence each assignment statement adds a mapping from the iden-
tifier to its meaning in the container corresponding to the current scope. Because expression sequences can
nest, and there are many such containers each having possibly conflicting mappings. Therefore there are
strict rules for evaluating the meaning of an identifier based on commonly accepted scoping rules.
Define the innermost scope as the mapping belonging to the currently executing expression sequence. Define
innermost−0 as innermost. Define innermost−i as the mapping belonging to an expression sequence which
contains an expression sequence statement using innermost−i+1 as its scope. Define outermost as any scope
not contained in any other scope. Given the above definition the following rules are followed for mapping:

map(id)

{

let i = 0

while(innermost-i != outermost)

{

if(innermost-i.contains(id))

{

return innermost-i[id];

}

i++;

}

}

Function definitions also subtly interact with scope in a slightly different manner. In particular, a function
definition adds the function to the outermost scope. Furthermore, this addition is performed prior to the
execution of the statement associated with the function definition. This allows a function to be in its
expression sequence’s scope. This is necessary for recursion. Note the above rules do not allow forward
declarations. In particular mutually recursive functions are not allowed in LaTenS.

5.10 Program

program: decls EOF { $1 }

A program is a sequence of function definitions ending with a specially named function called main:

returntype1 functionname(argtype11 arg11, argtype21 arg21, ..., argtypen1 argn1)

13

stmtlist1

returntype2 functionname(argtype12 arg12, argtype22 arg22, ..., argtypen2 argn2)

stmtlist2

...

returntypem functionname(argtype1m arg1m, argtype2m arg2m, ..., argtypenm argnm)

stmtlist3

void main()

stmtlistmain

The main function follows all previously defined rules of functions, and is the entry point of the LaTenS
program. Program execution begins at the first statement in the exprseqmain.

References

[1] http://www.openicon.com/mu/math/tensors 01.html

[2] https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#Real-Number-Constants

[3] https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html#String-Constants

14

