
Beat hoven

Sona Roy sbr2146 (Manager)
Jake Kwon jk3655 & Ruonan Xu rx2135 (Language Gurus)

Rodrigo Manubens rsm2165 (System Architect / Musical Guru)
Eunice Kokor eek2138 (Tester)

Contents

1 Beathoven 2

2 Data Types 3

Primitives . 3
Note . 4
Chord . 4
Seq . 4
Struct . 5

Meter . 5
Score . 5
Part . 6

Enum . 7
Array . 7

3 Lexical Conventions 8

Keywords . 8
Operators . 8
Comments . 9

4 Statements 10

Declaration and Identifiers . 10
Identifiers . 10
Declaration . 10

Control Flow . 10
if/else . 10
match . 11
while . 11
for and range . 11

Functions . 12

5 Standard Library 13

Modules . 13

1

Chapter 1

Beathoven

Digital Music Production has become a very powerful tool for all kinds of
musicians in this day and age. Through technologies like MIDI, musicians can
experiment with and create multi-track compositions. With the appropriate
software one can recreate any type of music, be it a guitar ri� or an orchestral
symphony.

Beathoven is a programming language that generates MIDI/MusicXML files so
that anyone, even people who don’t really know music, can compose songs by
putting together words that represent musical concepts.

Our language creates songs phrase by phrase. This allows users to modify entire
sequences of notes by either using our standard library or through user defined
functions of their own. Additionally, since our language does create MIDI files,
having this internal structure provides a closer mapping to the format of MIDI
files. This allows the user to take full advantage of what MIDI files can musically
describe and represent.

2

Chapter 2

Data Types

Primitives

Beathoven has a variety of fundamental data types such as int, string, bool,
double, etc.

There are two primitive types pitch and duration that are specific to the music
language.

pitch

Beathoven has two types of syntax for pitch values.

• Absolute Pitch: For absolute pitch, the accepted pitches are
([A-G][1-7][#|b]?), A0, B0, and C8.

pitch p = C3#;

• Pitch relative to key: For relative pitch, the accepted pitches are
([1-7][ˆ|_]?).

pitch re = 2; /* equivalent to D4 */

pitch fa = 4^; /* equivalent to F5, operator ^ raise the pitch by one octave */

pitch la = 6_; /* equivalent to A3, operator _ lower the pitch by one octave */

Rest is denoted by a silent pitch type defined as 0.

pitch rest = 0;

3

duration

duration is the length of time that a note is played. The whole note has a
duration of 1, and the half note has a duration of 1/2, etc.

duration quarter = 1/4;

duration dottedQuarter = 1/4 + 1/8;

Note

A Note is defined as a pitch, duration tuple. The default pitch of a note is
C4.The default duration of a note is a quarter note.

pitch p = F4#;

duration d = 1/16;

Note fSharpShort = p:d;

Note fa = 4:1/4;

Note defaultF = p; /* F4# pitch, 1/4 duration */

Note cWhole = :1; /* C pitch, 1 duration */

Chord

A Chord is an array of notes. Users can specify what kind of pitches they want in
the chord by using the chord quality function of the chord library. This function
allows users to specify the quality of the chord(ie minor, major chord).

Chord cmajor = C & E & G;

Chord fminor = Chord::Minor(F);

Additionally Users can create chords with notes in a particular order by using
the inversion function of the chord library. This function allows a user to specify
a chord’s inversion (i.e. root position, first inversion). The default inversion for
chords is root inversion.

func Chord::Minor(pitch base, int inversion) -> Chord;

Seq

A Seq is made up of Notes or Chords, as specified by braces {}.

Seq seq1 = {1 1 5 5 6 6 5:3/8};

4

Seq is mutable and its elements and subsequence can be easily accessed like in
python. Seq cannot have nested structures. A seq within another Seq will be
flattened before assignment.

Seq seq3 = {5 5 seq2[:6] };

Seq seqConcat = seq1 seq2 seq3 seq3 seq1 seq2;

Additionally the sequences module has built in functions to modify sequences
programmatically.

Seq phrase11 = {3 2 1 2} Rhythm(beats, {3 3 3});

Seq phrase2 = { phrase11[0:-1] 3 1};

For example, some of these functions allow the user to algorithmically mod-
ify and “improvise” new sequences based o� of the last notes of a sequence.
Other functions allow the addition of notes on two sequences simultaneously by
appending notes that follow a specific musical motion

Seq::add_note([input_sequence], [semitone/tone], [higher/lower/equal])

Seq::contrary_motion([first_sequence], [second_sequence], [up/down])

Struct

Beathoven supports user-defined structs, which can contain any data types and
also functions as methods.

There are three built-in structs defined in the Beathoven standard library: Meter

, Score and Part.

Meter

A Meter struct describes how many time values are within a measure of a score

struct Meter {

int n;

Duration d;

}

Score

Score is a singleton struct within every Beathoven program that describes the
musical context that all musical phrases must comply with. Every composition
has to have a key signature, a time signature and a tempo that all phrases must
abide by and the Score struct describes just that.

5

struct Score {

Part parts[];

Chord keySignature;

Tempo int

Meter timeSignature = {4, q};

/* methods */

func setKeySignature(pitch[] signature);

func setTimeSignature(Meter signature);

}

Score specifies the total number of parallel parts, the tempo, meter, the key
common to all musical sequences in the composition and the total number of
measures each part is allowed to have.

Score.parts < part1 < part2;

Score.setKeySignature([C D E F G A B]);

Score.setKeySignature(KeyMajor(C));

In the above example, we use the < part operator to add parts 1 and 2 to the
Score struct and the setKeySignature function to set the key for all sequences
in this composition. Thus the instance of the Score struct in this example has a
parts[] array of size 2, and a key of C Major.

Part

A Part is a container for sequences that specifies what sequences should be
played (and when they should be played) throughout a score. If a part has no
specified sequences for a specific measure, a part autofills those measures with
rest sequences until all of the measures in the part are covered.

struct Sequence {

Seq seq;

Double startTime = 0;

Meter timeSignature;

}

struct Part {

Sequence seqs[];

Chord keySignature;

Enum Instrument instrument;

/* methods */

func operator < (Seq seq);

func operator < (Seq seq, double startTime);

}

Part inherits from Score the value of their common attributes, if not specified
when an instance is initialized.

6

Part part_1 = [seq_1*1, seq_2*2]

-> [seq_1, seq_2, rest_seq]

Enum

An Enum specifies a user defined list of constants accessible through the Enum’s
identifier

Enum Instrument {piano, violin, flute, clarinet, trumpet}

instrument = Instrument::piano;

Array

Arrays are homogeneous. An array can hold multiple elements of the same data
type, which can be either primitive or non-primitive. Arrays are 0-indexed and
are specified by square brackets []

int[] numbers = [1, 2, 3, 4, 5];

pitch[] key = [C, D, E, F, G, A, B];

Enum Instrument[] instruments = [Instrument::piano, Instrument::violin];

7

Chapter 3

Lexical Conventions

Keywords

Below are the keywords Beathoven reserved for itself.

bool break else double duration

false for func

if in int

match module null pitch

range return string true using

Some of Beathoven’s keywords start with upper-case characters. These keywords
denote non-primitive data types.

Chord Enum Note

Seq Struct

Lastly, one should note that certainpitch values such as C, F4#, Ab are also
reserved.

Operators

In Order of decreasing precedence

Precedence Operators Description Associativity
1 [] Array/Seq access operator Left
1 . Membership access operator Left
2 ˆ, _ Pitch operator Left
3 : Note operator Left

8

Precedence Operators Description Associativity
4 * , /, % Arithmetic operator Left
5 + , - Arithmetic operator Left
5 + Duration operator Left
6 !=, >=, ==, <=, >, < Logical operators Left
6 < Part operator Left
7 = Assignment Right

Comments

Beathoven allows for multi-line comments. Any text between /* */ are ignored.
Comments cannot be nested.

/* Beathoven */

9

Chapter 4

Statements

Declaration and Identifiers

Identifiers

Identifiers are character sequences used for naming variables, functions and new
data types. Valid characters include ASCII letters, digits and the underscore. A
valid name cannot start with a digit.

Declaration

Every name has a type which determines the operations that can be performed
on it. A declaration is a statement that introduces a name into the program and
specifies its type.

Seq seq;

Chord chord = C & E & G & C5;

Control Flow

if/else

Users can write conditionals in Beathoven by writing either:

if (bool-expression) {

/* statements */

}

10

Or

if (bool-expression) {

/* statements */

} else {

/* statements */

}

match

Users can write a match statement by following the below format. The condition
following the match keyword evaluates to one of the many cases specified within
the braces. Once it does it executes the corresponding statement.

match (condition) {

1 => /* statements */

2 => /* statements */

_ => /* statements */

}

while

The while statement executes a block of code while the condition is true. A
break statement can be used to terminate the execution of the loop.

while (condition) {

/* statements */

}

for and range

for identifier in array { statement }

For loops evaluate the statement within the braces for every item in the array,
with the identifier assigned to the current array item.

for i in range(0, 100) {

/* statements */

}

for note in seq {

/* statements */

}

11

Functions

Functions are defined using the func keyword.

Users can define any kind of function they want by following the format below:

func Function-identifier (arg1-type arg1-identifier . . . argN-type argN-identifier)
-> return-type {statements}

/* A function that returns the unit type �()�, i.e. nothing */

func print_helloworld() -> () {

print("hello world");

}

/* A function that returns a chord */

func Major(pitch base, int inversion) -> Chord {

if (inversion == 0) {

return Note(base) & Note(base + 4) & Note(base + 7);

}

/* more statements */

}

When the returned value is one of the input arguments, user can specify that
argument in the return part instead of writing a return statement in the function
body.

/* A built-in function that copy the duration of �beats� to �melody�. The mutable �melody� is returned. */

func Rhythm(Seq beats, Seq melody) -> melody {

if (beats.length == 0) Exception(“empty beats”);

int i = 0;

for j in range(0, melody.length) {

melody[j].duration = beats[i].duration;

if (i + 1 < beats.length) i = i + 1;

else i = 0;

}

}

12

Chapter 5

Standard Library

Modules

Libraries are organized by modules.

module Chord {

func Major(Pitch base, int inversion)

-> Chord major {

/* statements */

}

func Minor(Pitch base, int inversion)

-> Chord minor {

/* statements */

}

}

Members of a module can be accessed with :: operator. Alternatively, users
can import that module with keyword using and get access to all its members
directly.

Chord::Major(C, 0);

using Chord;

Major(D, 1);

The standard library Beathoven are imported by default.

module Beathoven {

struct Part {

/* declarations */

/* methods */

}

13

func RenderMIDI() -> File {

/* statements */

}

}

14

	Beathoven
	Data Types
	Primitives
	Note
	Chord
	Seq
	Struct
	Meter
	Score
	Part

	Enum
	Array

	Lexical Conventions
	Keywords
	Operators
	Comments

	Statements
	Declaration and Identifiers
	Identifiers
	Declaration

	Control Flow
	if/else
	match
	while
	for and range

	Functions

	Standard Library
	Modules

