
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Stephen A. Edwards Due Oct 10, 2016
Columbia University at 4:10 PM

Submit solution on paper unless you’re a CVN student;
Include your name and your Columbia ID (e.g., se2007).
Do this assignment alone. You may consult the instructor or a

TA, but not other students.

1. Write regular expressions for floating point literals according
to the following (after K&R):

A floating constant consists of an integer part, a
decimal point, a fraction part, an e, and an option-
ally signed integer exponent. The integer and frac-
tion parts both consist of a sequence of digits. Ei-
ther the integer part, or the fraction part (not both)
may be missing; either the decimal point or the e
and the exponent (not both) may be missing.

Hint: make sure your scanner accepts constants such as
1. 0.5e-15 .3e+3 .2 1e5 3.5e-4 but not integer con-
stants such as 42

2. Draw a DFA for a scanner that recognizes and distinguishes
the following set of keywords. Draw accepting states with
double lines and label them with the name of the keyword
they accept. Follow the definition of a DFA given in class.

abort type if elsif subtype while abs when

3. Construct nondeterministic finite automata for the following
regular expressions using Thompson’s algorithm (Algorithm
3.23, p. 159, also shown in class), then use the subset con-
struction algorithm to construct DFAs for them using Algo-
rithm 3.20 (p. 153, also shown in class).

(a) (ab | ab)∗b

(b) ((a | ε) a)∗

(c) b (b∗ | a∗) b

Number the NFA states; use the numbers to label DFA states
while performing subset construction, e.g., like Figure 3.35
(p. 155).

4. Using this grammar, whose four terminals are a , ()

S → (L)
S → a
L → S,L
L → S

(a) Construct a rightmost derivation for (a, (a, a)) and show
the handle of each right-sentential form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the concrete parse tree that would be constructed
during this shift-reduce parse.

5. Build the LR(0) automaton for the following ambiguous
grammar. if, else, and null are terminals; the third rule indi-
cates T may be the empty string. Indicate the state in which
the shift/reduce conflict appears.

S′ → S
S → if S T
S → null
T →
T → else S

Check your work by running “ocamlyacc -v” on the grammar
below and looking through the “.output” file. Include anno-
tated snippets from the .output file that confirm your answer.

%token IF ELSE NULL
%start s
%type <int>s

%%

s : IF s t { 0 }
| NULL { 0 }

t : /* empty */ { 0 }
| ELSE s { 0 }

