
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 3

Prof. Stephen A. Edwards

Columbia University

Due June 22, 2016 at 5:30 PM

Name:

Uni:

Show your work for each problem; we are more interested in how you get
the answer than whether you get the right answer.



1. (20 pts.) In MIPS assembly, implement the standard C function rindex:

char *rindex(const char *s, int c)

This returns a pointer to the rightmost occurrence of the character c in
the string s or NULL if the character is not found. The terminating null
byte is considered to be part of the string.

Start from the rindex.s template on the class website; use the SPIM
simulator.

Your function must obey MIPS calling conventions.

Turn in your solution on paper with evidence that it works. Add some
test cases. Also, upload your solution as a single .s file to Courseworks.

On the supplied test harness, your code should print

Looking for ’e’ in "Hello World!"
Found at position 1
Looking for ’l’ in "Hello World!"
Found at positio<n 9
Looking for ’z’ in "Hello World!"
Not found
Looking for ’Hello World!"
Found at position 12
Looking for ’z’ in "The quick brown fox jumps over the lazy dog"
Found at position 37



2. (30 pts.) In MIPS assembly, implement an “eval” function that walks a
binary tree that represents an arithmetic expression and computes its
meaning. Each tree node begins with a byte that indicates the the node
is an integer (leaf) or operator plus two pointers to their arguments. In
C, this would be

struct expr {
char op; /* 0 for leaf */
union {

int leaf;
struct {
struct expr *left, *right;

} branch;
} pl;

};

int eval(struct expr *e)
{
int left, right;
if (e−>op == 0) return e−>pl.leaf;
left = eval(e−>pl.branch.left);
right = eval(e−>pl.branch.right);
switch (e−>op) {
case ’+’: return left + right;
case ’−’: return left − right;
case ’*’: return left * right;
}
return 0;

}

Start from the eval.s template on the class website.

Your function must obey MIPS calling conventions. Use the stack to
implement the recursion.



Implement your function in the SPIM simulator.

Turn in your solution on paper with evidence that it works. Add some
test cases. Also, upload your solution as a single .s file to Courseworks.

On the supplied test harness, your code should print

42 = 42
17 = 17
25 = 25
(17+25) = 42
(5*(2+3)) = 25
((5*(2+3))+(42-17)) = 50



3. (25 pts.) Extend the single-cycle MIPS processor to support the andi
instruction (i-type, OP=001100).

SignImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory

WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

Inst. OP RegWrite RegDst ALUSrc Branch MemWrite MemToReg ALUOp

R-type 000000 1 1 0 0 0 0 1-
lw 100011 1 0 1 0 0 1 00
sw 101011 0 - 1 0 1 - 00
beq 000100 0 - 0 1 0 - 01



4. (10 pts.) Assuming the following dynamic instruction frequency for a
program running on the single-cycle MIPS processor

addu 25%
addi 25%
beq 15%
lw 20%
sw 15%

(a) (5 pts.) In what fraction of all cycles is the data memory accessed
(either read or written)?

(b) (5 pts.) In what fraction of cycles is the sign extend circuit used?



5. (15 pts.) For each of the caches listed below, show how a 32-bit
addresses breaks into tag, set index, and byte offset fields.

Cache A: 8192B, 4-way set-associative, 16B lines

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cache B: 4096B, direct-mapped, 8B lines

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


