Fundamentals of Computer Systems Review for the Final

Stephen A. Edwards

Columbia University

Summer 2016

The Final

3 hours

8-10 problems

Closed book

Simple calculators are OK, but unnecessary

One double-sided 8.5 × 11" sheet of your own notes

Much like homework assignments

- Number Representation
 Binary, Octal, Hex
 One's, Two's Comp.
 Fixed-point, BCD
 Boolean Logic
 Axioms, Simplification
 Implicants, Minterms
 De Morgan's Theorem
 Karnaugh Maps
 Combinational Logic
 - DecodersMultiplexers
 - Timing and Glitches
 Adders

 Sequential Logic
 - Sequential Logic
 Bistables; SR, D Latches
 D Flip-Flops
 Synchronous Logic
 Shift Registers

Counters

- Finite State MachinesMoore and Mealy
- Machines
 ► The Snail Example
 - The TLC: One-Hot Encoding
 - The InverterThe CMOS NAND Gate

CMOS Logic Gates

The CMOS NOR GateA CMOS

AND-OR-INVERT Gate

- General Static CMOS Gates
- MemoriesROMs, EPROMs, FLASH
- ROMS, EPROMS, FLA
 The SRAM Cell
 Dynamic RAM Cell
 PLAS and FPGAS

- MIPS Architecture/Assembly programming
 - Computational, Load/Store, & Control-flow Instrs.
 - Instruction Encoding
 - Pseudoinstructions
 - Calling Conventions
 - Higher-level constructs; subroutines and recursion
- MIPS Microarchitecture/Datapaths
 - Single-Cycle
 - ▶ The datapath for lw, sw, R-type, and branch
 - The controller: instruction decoding
 - Processor Performance
 - Multi-cycle
 - Constructing the datapath
 - ► The FSM controller
 - Performance Analysis
 - Pipelined
 - Basic pipelined datapath and control
 - ► Hazards: forwarding, stalling, and flushing
 - Performance Analysis

- ► The Memory Hierarchy: Caches
 - Memory hierarchy to make it fast & cheap
 - Temporal and Spatial Locality
 - Memory performance; hit rate
 - ► Direct-mapped caches
 - n-way set associative cachesFully associative caches