
RSAB, the RSA box

Noah Stebbins (nes2137)
Adam Incera (aji2112)
Jaykar Nayeck (jan2150)
Emily Pakulski (enp2111)

February 2015

Contents

1 Overview 2
1.1 Generating Keys . 2
1.2 Encrypting Messages . 2
1.3 Decrypting Messages . 2
1.4 Software Portion . 3

1

1 Overview

We plan on building a hardware accelerator for the RSA encryption algorithm.
There are three main steps: key generation, encryption, and decryption.

1.1 Generating Keys

Below are the steps to generate the private and public keys, d and e, respec-
tively.

• Select two distinct prime numbers p and q. A list of large prime numbers
can be stored on an SD card on the FPGA. To select the prime numbers
we can use the $random function on the index of the large prime numbers.
However, there might be better ways to generate random numbers, and we
might explore interfacing with a true random number generator, or having
a dedicated portion of the chip generate random numbers.

• Multiply both numbers, yielding n(n = pq). This might require our own
SystemVerilog implementation of multiplication because we expect the
numbers to be in the 400 bit range. Then we need to multiply p− 1 and
q−1; this should not be a problem if we use the function from the previous
step.

• Find a positive integer that is less than (p − 1)(q − 1) and is coprime
with (p− 1)(q − 1), a value called e. This may prove difficult because we
will not want to use loops, so we need to do more research. (However,
a quick initial search revealed that there are efficient ways to compute e
by raising something to the power of 2 and adding 1. So something like
237+1 is probably coprime with (p−1)(q−1). This can be done extremely
efficiently on an FPGA because raising 2 to the power of something would
just be bit shifts.)

• Determine d, the multiplicative inverse of e(mod (p− 1)(q − 1)). This can
be done efficiently using the extended Euclid’s algorithm.

The FPGA would then publish (e, n) and keep d secret.

1.2 Encrypting Messages

To encrypt a message m, another person would compute c, the cypher text,
using the (e, n) values published by means of the operation c ≡ me(modn).
This can be done efficiently using modular exponentiation.

1.3 Decrypting Messages

To decrypt a message c, the person would compute m ≡ cd(modn). This
can also be done efficiently using modular exponentiation. We might want to

2

explore binary exponentiation to drastically reduce the time in the modular
exponentiation.

1.4 Software Portion

If our implementation is sufficiently fast, we could add an extra layer of soft-
ware on top of the FPGA so two FPGAs running this code could demonstrate
usage. We could build a very secure message service where we would send RSA
encrypted messages with constantly changing public and private keys.

This would demonstrate the value of a hardware-level implementation, be-
cause the encryption speed gains could allow this kind of optimization. Chang-
ing keys periodically would make it even more difficult to decrypt the messages
the keys.

3

