
Team: Labyrinth Embedded Systems CSEE 4840 Spring 2015

Parallel Implementation of Dijkstra’s Algorithm in FPGA

Ariel Faria (af2791), Michelle Valente (ma3360), Utkarsh Gupta (ug2121) and Veton Saliu (vs2519)

Department of Electrical Engineering

Columbia University in the City of New York, New York

Abstract

This report discusses our project’s design to speed up Dijkstra’s shortest path finding algorithm

on FPGA (for the purpose of this project we’ll be using Altera’s Cyclone V board). Parallel

implementation of Dijsktra’s algorithm on FPGA has been shown to overcome the downside of quadratic

growth of the complexity of the algorithm with the number of nodes [1-3]. We will apply this algorithm

to the specific application of solving for the shortest path through a maze.

Introduction

A. Dijkstra’s Algorithm

Dijkstra’s algorithm calculates the optimal path through a network, starting from the source node to a

target node. In a maze solving application, the optimal path is the shortest path allowed between the

entrance and exit, with the nodes characterized by branching points in a maze. The algorithm is as

follows.

Let the value of each node correspond to the distance between the node and the initial node. The

initial node is assigned a value of 0 and all other nodes are assigned the value of infinity. The value of

each node adjacent to the initial node is compared to the distance between this and the initial node, and

the smallest of these values is assigned to the node. We transition to the adjacent node with the smallest

value. The same operation is performed, with the values at each yet unobserved node compared to the

total distance of the node to the initial node, and the value of the node updated accordingly. These

operations are repeated until the target node is reached. Pseudo code for Dijkstra’s algorithm, taken from

Wikipedia [4], is shown below:

 1 function Dijkstra(Graph, source):

 2

 3 dist[source] ← 0 // Distance from

source to source

 4 prev[source] ← undefined // Previous node

in optimal path initialization

 5

 6 for each vertex v in Graph: // Initialization

 7 if v ≠ source // Where v has not yet been

removed from Q (unvisited nodes)

 8 dist[v] ← infinity // Unknown distance

function from source to v

 9 prev[v] ← undefined // Previous node

in optimal path from source

10 end if

Team: Labyrinth Embedded Systems CSEE 4840 Spring 2015

11 add v to Q // All nodes initially

in Q (unvisited nodes)

12 end for

13

14 while Q is not empty:

15 u ← vertex in Q with min dist[u] // Source node in

first case

16 remove u from Q

17

18 for each neighbor v of u: // where v is

still in Q.

19 alt ← dist[u] + length(u, v)

20 if alt < dist[v]: // A shorter path

to v has been found

21 dist[v] ← alt

22 prev[v] ← u

23 end if

24 end for

25 end while

26

27 return dist[], prev[]

28

29 end function

Software Implementation

The user space C program will perform several functions. After the maze is constructed, the

software will generate a graph by translating the branching points in the maze and path lengths between

these points to nodes and internode distances. The graph data will be sent to the FPGA. Once the FPGA

completes Dijkstra’s algorithm to calculate the optimal path, the software will receive this data and map it

to the maze. The program will generate a ternary matrix representation of the maze, containing position

information for the walls, paths, as well as the optimal path as calculated by the FPGA, and send that

information to the FPGA so that it may be displayed.

Hardware Implementation

The FPGA will receive from the user space C program the graph data and store it into memory. It

will, then, perform the appropriate operations, as stated in the pseudocode, getting one node, doing the

path comparisons in parallel and storing the temporary values in memory. After it does the whole process

to all the nodes it’s going to send the optimal path back to software. The block diagram will look

something like:

Team: Labyrinth Embedded Systems CSEE 4840 Spring 2015

Milestones

1) Milestone 1

a) Construct the maze

b) Generate a graph

c) Implement Dijkstra’s algorithm in C

d) Verify the software implementation of the algorithm

2) Milestone 2

a) Implement the algorithm in hardware

b) Send graph data from the software to the hardware

c) Write a testbench to verify the hardware implementation

3) Milestone 3

a) Display the maze as well the optimal path

b) Perform debugging on the design

c) Compare performance of the hardware implementation against the software

Team: Labyrinth Embedded Systems CSEE 4840 Spring 2015

References

[1] A. Sharma and S. Hauck, “Accelerating FPGA routing using architecture-adaptive A* techniques,”

Proc. - 2005 IEEE Int. Conf. F. Program. Technol., vol. 2005, pp. 225–232, 2005.

[2] M. Tommiska, “Dijkstra’s Shortest Path Routing Algorithm in Reconfigurable Hardware,” Most, no.

August, pp. 653–657, 2001.

[3] E. Technologies, “Dijkstra’s algorithm implementation on Fpga Card for Telecom Calculations,” vol.

4, no. 2, pp. 110–116, 2013.

[4] http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Algorithm.

