
ProbL: Probabilistic Modeling Language

Final Report

Nir Grinberg, Andrew Wong, Diana Liskovich, Sam Tkach
{ng2470,aw2192,dl2956,st2794}@columbia.edu

July 3, 2015

1

Contents

1 Introduction 4

2 Language Tutorial 5
2.1 Program Structure . 5
2.2 Probabilistic Assignments . 5
2.3 Compilation . 6

3 Language Reference Manual 7
3.1 Types . 7

3.1.1 Primitive Types . 7
3.1.2 Collections . 7

3.2 Lexical Conventions . 8
3.2.1 Control Flow . 8
3.2.2 Comments . 8
3.2.3 Identifiers . 8
3.2.4 Keywords . 8
3.2.5 Operators . 9
3.2.6 Constants . 9
3.2.7 Whitespace . 9
3.2.8 Scope . 9

3.3 Syntax . 9
3.3.1 Operators and Symbols 9
3.3.2 Function Definitions . 10
3.3.3 Loops and Conditionals 10
3.3.4 Modeling . 11

3.4 Standard Library Functions . 12
3.4.1 Randomization . 12
3.4.2 I/O functions . 12
3.4.3 Miscellaneous . 12

3.5 Sample Programs . 13
3.5.1 Linear Regression . 13
3.5.2 Baysian Model of Coin Tosses 13

4 Project Plan 15
4.1 Team Roles . 15
4.2 Timeline . 15
4.3 Development Environment . 15
4.4 Programming Style Guide . 15
4.5 Project Log . 15

5 Architectural Design 16
5.1 Structure . 16
5.2 Inter-Component Interfaces . 16
5.3 Component Implementation Roles 16
5.4 Testing Process . 17
5.5 Responsibilities . 17
5.6 Sample Test Program . 17

2

6 Lessons Learned 18
6.1 Nir Grinberg . 18
6.2 Diana Liskovich . 18
6.3 Sam Tkach . 18
6.4 Andrew Wong . 19

7 Appendix A: Project Source 20

8 Appendix B: Project Log 38

3

1 Introduction

The vast amounts of data readily available for processing (a.k.a the buzz around
“Big Data”) have created an even greater need for careful modeling and anal-
ysis of these large datasets. One of the most common techniques for modeling
data is using probabilistic models, in particular, using Directed Graphical Mod-
els (DGM’s), which describe the dependencies between random variables in a
probabilistic model. DGM’s are Directed Acyclic Graphs (DAG’s) where nodes
are random variables and directed edges, connecting node u to v, represent
parenting such that: P (u, v) = P (u)P (v|u). Despite the somewhat confining
definition, DGM’s are suitable for modeling a wide range of important artificial
intelligence and machine learning models: from generalized linear regression,
factor analysis and PCA, through hidden markov models, time-series models,
Kalman filters, Bolzman Machines and hierarchical mixture models.

Still, specifying a probabilistic graphical model in C, Java or even R is not
native to the language, which oftentimes implies that people re-implement com-
mon statistical inference algorithms (e.g. Gibbs Sampling) for each model. The
use of third-party packages like mcmc in R is restrictive and does not easily
allow for user-defined distributions or functions. Third-party modeling software
such as WinBUGS does allow for model specification, but suffers from the same
restrictive shortcomings as mentioned before.

Probl is meant to be an answer to these problems. It is designed to be simple
to use for statisticians and mathematicians who need to do parameter estimation
on some distribution without needing to develop a structured environment for
these computations.

4

2 Language Tutorial

Probl is a language that is easy to pick up for anyone familiar with C-like
imperative languages. All programs in the language take this form:

2.1 Program Structure

input

{

/* ... block of variable declarations ... */

}

output

{

/* ... block of variable declarations ... */

}

/* ... any number of function declarations ... */

model

{

/* ... block of statements ... */

}

The variables contained in the input and output blocks are considered global.
The input variables are automatically populated by reading from a csv file
holding data. The output variables are automatically written to an output file.
Specifics and syntax are similar to C, and will be covered in the next section.

2.2 Probabilistic Assignments

ProbL is meant to abstract out all the technical details of statistical inference
in graphical models. The strength of graphical models lays in their ability to
represent a wide range of statistical models. Therefore, our language should be
able to represent, for example, the following use cases (and many others):

• Linear regression

• Principle Component Analysis (PCA)

• Latent Dirichlet Allocation (LDA)

• Hidden Markov Models (HMM’s)

Our algorithm of choice was Gibbs Sampling, which is fairly simple, itera-
tive, optimization process. All it takes to infer model parameters using Gibbs
Sampling is a set of updating equations, given to the compiler when users spec-
ify probabilistic functions. For example, our sample test program (’tests/test-
gibbs.probl’) demonstrates inference of mean values for a model common in
particle physics:

P (x, y) = kx2 ∗ exp(−xy2 − y2 + 2y − 4x)

5

In order to draw inferences about this model using Gibbs Sampling one needs
to have the conditional distributions of X|Y = y and Y |X = x, which for this
model turn out to be fairly simple:

P (X|y) = Gamma(3, y2 + 4)
P (Y |x) = Normal(1

1+x , (
1

2(1+x))
2)

All it takes in ProbL to infer the means of the full model is to specify the
above two updating equation, which can be done as follows:

fun~ bivar(): x, y {

x = gamma_sample(3.0,y*y+4.0,0.0);

y = 1.0/(x+1) + random_sample()/sqrt(2*x+2);

}

Our test program demonstrates that the program arrives at reasonable av-
erages for this simple model - given average value of y = 1.1 the average value
of x = 15.5, which is good numerical approximation for the average of a the
gamma distribution in this case with α = 3.0 and β = 1.12 + 4 = 5.21 of 15.63.

Of course, without including a mathematical library that has basic mathe-
matical functions and matrix operations (e.g. for inverting a matrix) it’s hard
to implement more sophisticated models at this time. Nevertheless, our lan-
guage contains all the necessary building blocks for implementing such features
and allow for the specification of a wide range of statistical models, from linear
regression to Kalman filters and more.

2.3 Compilation

Compilation is simple. To compile a program via the command line using a
shell such as bash or zsh, run the following.

$./probl source_file.probl

This will output a .java file, which can be compiled using a Java compiler
of the programmer’s choosing. One of the nice sice effects of this is that, since
nearly every computer has some version of Java, the programs are very portable.

6

3 Language Reference Manual

3.1 Types

3.1.1 Primitive Types

• int - The 32-bit int data type can hold integer values in the range of
-2,147,483,648 to 2,147,483,647.

• float - The float data type stores real number values as double-precision
floating-point numbers. Its minimum value is no greater than 1e37 and
its maximum value is no less than 1e37.

• string - The string data type represents a sequence of characters.

• bool - The bool data type represents a boolean value. It takes one of two
values: true or false.

• enum - The enum data type represents a variable that takes one value
from a pre-defined set of values.

Here are some examples of declaring and defining a variable of type int:

int i = 100 ;

Here are some examples of declaring and defining a variable of type float:

f loat f = . 1 0 1 ;

Here are some examples of declaring and defining a variable of type string:

s t r i n g s = ’ abc ’ ;

Here are some examples of declaring and defining a variable of type bool:

bool b = true ;
bool b = f a l s e ;

Here are some examples of declaring and defining an enum:

enum DIRECTIONS = {north , south , west ea s t } ;
enum DIRECTIONS = {north , south , west , e a s t } d i r ;
enum DIRECTIONS d i r = north ;

3.1.2 Collections

• array - The array data structure allows you store one or more elements
consecutively in memory. Array elements are indexed beginning at posi-
tion 0. Arrays can be one dimensional or two dimensional.

Here are some examples of declaring and defining an array:

int [3] a = [1 0 , 20 , 3 0] ;
bool [2] [2] b = [[true , t rue] , [f a l s e , f a l s e]] ;
b = [[true , t rue] , [f a l s e , f a l s e]] ;
a [1] = 5 ;
b [0] [0] = f a l s e ;

7

3.2 Lexical Conventions

The objective of ProbL is to allow for easy specification of Directed Graphical
Models and efficient inference of such models.

3.2.1 Control Flow

ProbL would support standard looping, conditional statements and block con-
trol flows as in C. The table below summarizes this.

; end line
/* */ begin/end comment block
for, while standard looping constructs
if, else standard conditional statement
{ } code block start and end (respectively)

Table 1: Control Flow

3.2.2 Comments

ProbL has the same multi-line comment methods as C.

3.2.3 Identifiers

Identifiers are used to create variables and functions. Each identifier will be a
combination of digits, letters, and symbols. Letters can be lowercase or upper-
case ASCII characters, ProbL will be case sensitive. Digits will be the ASCII
characters of 0-9.

3.2.4 Keywords

ProbL reserves the following words for various purposes. As such, they should
not be used as identifiers.

int data type for an integer
float data type for a floating point number
enum data type taking one value from a pre-defined set of values.
string data type for a sequence of ASCII characters
if, else conditional statement
bool data type for a Boolean value
true, false boolean literals
while execute and loop the contents until the condition is false
and, or, not boolean logical operators
fun defines a standard function taking arguments and returning

a value of a given type
print prints information to standard out
return returns a value
input, output, model denote data, parameters and model section of the program

Table 2: Keywords

8

3.2.5 Operators

Our most important operator is the ∼ operator, which defines the distribution
of a random variable. For instance, in the sample program below we define y to
be normally distributed using the ∼ operator with parameters that correspond
to a linear regression model. The operators are:

!=, ==, <, <=, >, >= Numerical relational
+, -, *, /, %, ˆ Arithmetic
and, or, not Logical
∼ Sample a value from the distribution on the RHS
= Assignment

Table 3: Operators

Mathematical operators act differently in the context of the ∼ operator.

3.2.6 Constants

Constants are Boolean types or sequences of digits. For a Boolean type, a
constant is true or false. For a sequence of digits, a minus sign indicates negative
value.

3.2.7 Whitespace

Blank characters represent Whitespace. Whitespace is ignored by the compiler
and is used to separate tokens from one another, unless they are inside a string
literal of course.

3.2.8 Scope

Scope of variables is straightforward in ProbL. If a variable is declared outside
a block (i.e.- loop, conditional, or function), it is considered as a global variable
in that file. Variables declared inside blocks are local to those blocks. In nested
blocks, variables can be referenced in the block in which it was defined as well
as in any block inside that block. The input and output variables are considered
global variables.

3.3 Syntax

Much of the ProbL syntax is similar to that of C. Function definitions, condi-
tional statements, and loops work largely the same way. There are, however,
several syntactic qualities unique to ProbL. The following sections will cover the
syntax for all aspects of the language.

3.3.1 Operators and Symbols

Assignment in ProbL works as follows. The = operator is used for all non-
probabilistic datatypes, while the ∼ operator is used to assign a distribution
to a random variable or to link random variables conditionally. Probabilistic
assignment is evaluated differently from regular assignment in a few ways.

9

/* probabilistic function declaration */

fun~ f(float[] x, float[] y):a,b { ... }

/* probabilistic function call */

float a;

float b;

a,b ~ f(x,y);

Arithmetic symbols for addition, subtraction, multiplication, division, and
exponentiation are binary operators. So are the two assignment operators, and

The following are miscellaneous (non-operator) symbols used for various
things in the language:

/* */ begin and end comment block
; signifies end of a line of code
: used in function declaration
, used to separate arguments, elements of collections
{ } begin or end a block of code, define enums
() used for arithmetic grouping, functions, loops, and conditionals
[] used for array element access and instantiation, define collections
’ ’ used to denote string literals

Table 4: Symbols

3.3.2 Function Definitions

Functions are defined in the following form. When writing a normal function,
use the ”return” keyword to make it return a value.

/∗ normal f unc t i on ∗/
fun funct ion name (type1 arg1 , type2 arg2 , . . .) : r e tu rn type
{

/∗ . . . f unc t i on code here . . . ∗/
return output va lue ;

}

/∗ p r o b a b i l i s t i c f unc t i on ∗/
fun ˜ funct ion name (<args as above>):<comma−de l im i t ed parameters>
{

/∗ parameters as s i gned to t h e i r g i b b s update f unc t i on s ∗/
}

All functions must return a value.

3.3.3 Loops and Conditionals

ProbL supports for and while loops as well as if-else statements similar to those
in C. while and if take a boolean expression, and for uses a more complicated
syntax. Here is an example:

f o r (i n t i ; i<10 ; i = i + 1) /∗ i t e r a t e i n t i from 0 to 10 ∗/

10

{ /∗ with step s i z e 1 ∗/
i n t j = 0 ;
whi l e (j < i)
{

j = j + 1 ;
}

i f (j == i)
{

j = j − 1 ;
}
e l s e
{

j = i ;
}

}

3.3.4 Modeling

The core functionality of the language is its modeling capabilities. Each pro-
gram needs to have a modeling block, which defines the graphical model to
apply to data. Using the optional ”input” and ”output” keywords we let pro-
grammers of ProbL specify what data to use and which parameters to estimate.
Since reading input and estimating parameters is the core of our language we’ll
provide standard ways for our users to read in and output a csv file in a sim-
ple format. This currently consists of a user providing an input file named
input.csv consisting a header for each column of data specifying the variable
name. Once compiled, executing a program that uses the optional input and/or
output blocks would require an argument passed in that specify where in the
file system the input/output should be. For instance, here is the skeleton of a
program that makes use of these features on 2 arrays of data, x and y:

input {
/∗ data ∗/

f loat [] x ;
f loat [] y ;

}
output {

/∗ v a r i a b l e d e c l a r a t i on s o f parameters to e s t imate ∗/
}
fun ˜ norm(f loat [] x , f loat [] y) : a , b
{
/∗ g i b b s sampling updat ing equa t ions f o r parameters (i . e.− a , b) ∗/
}

model {
/∗ b l o c k o f s ta tements to execu te ∗/
a , b ˜ norm(x , y) ;

11

}

This would return an array of float containing the estimated parameters in
the order in which they were declared. These features can also be used outside
of a function. See the sample program for a concrete example.

3.4 Standard Library Functions

ProbL provides a minimal set of functions that are at the core of any statisti-
cal model represented and inferred using ProbL. These include the basic rand

function to generate random samples from a uniform distribution, basic I/O
functions and a len function to find the length of an array or a string.

3.4.1 Randomization

The most essential building block for randomization is the function rand:

• rand():float - generates a float in the range 0 to 1 uniformly at random

• srand(int seed):int - initialize the pseudo-random process using the
provided seed.

Using these building blocks, more complex statistical distributions can be
defined. A common sampling technique is using the inverse cumulative distri-
bution function (CDF) with a uniform sample from [0, 1], which can be easily
obtained using rand.

3.4.2 I/O functions

We will support a few simple I/O functions:

• print(string str):int - print the provided string to programs output.

• open(string filename, string mode):int - returns a file descriptor

for the function opened in the specified mode (‘r’ for reading text files or
’w’ for writing text files).

• close(int file):int - closes the file specified using file.

• read(int file):string - read till the end the previously opened file.

• write(int file, string content):int - writes content into previ-

ously opened file.

3.4.3 Miscellaneous

• len(string str):int - returns the length of the provided string.

• len(int[] a):int - returns the length of the first dimension of an array
(of integers in this example).

12

3.5 Sample Programs

Refer to section 5.6 for current test programs and their respective generated
Java programs.

3.5.1 Linear Regression

Below is an example program that given two vectors (x and y) of observed
variables would infer the parameters of the linear regression model (a, b and
sigma):

input {
f loat [] x ;
f loat [] y ;

}
output {

f loat a ;
f loat b ;
f loat sigma ;

}
fun ˜ norm(f loat [] x , f loat [] y) : a , b , sigma
{

/∗ Gibbs sampling update computat ions f o r each parameter be ing es t imated ∗/
}
model {

a , b , sigma ˜ norm(x , y) ;
}

3.5.2 Baysian Model of Coin Tosses

Below is an example program that given a vector (y) of observed outcomes of a
coin toss infers the probability the coin is biased (theta):

input {
bool [] y ;

}
output {

f loat theta ;
}
fun b e t a d i s t (f loat a , f loat b) : f loat {

/∗ implementat ion o f the be ta d i s t r i b u t i o n , ∗/
/∗ re turns a number in (0 ,1) ∗/

}
fun gamma dist (f loat alpha , f loat beta) : f loat {

/∗ implementat ion o f the gamma d i s t r i b u t i o n , ∗/
/∗ re turns a number in (0 , i n f) ∗/

}
fun binomial (f loat theta) : bool {

/∗ implementat ion o f the b inomia l d i s t r i b u t i o n , ∗/
/∗ re turns a boo lean . ∗/

}

13

model {
a ˜ gamma dist (0 . 5 , 0 . 8) ;

b ˜ gamma dist (1 . 0 , 2 . 0) ;
theta ˜ b e t a d i s t (a , b) ;

y ˜ binomial (theta) ;
}

14

4 Project Plan

The process for creating Probl was fairly standard to the class. We divided up
work into individual parts when possible, using git (https://github.com/deeml/ProbL)
to collaborate on the code. The compiler itself was written in Ocaml, and our
target language was Java, although we originally planned for it to be C.

4.1 Team Roles

The following responsibilities were set at the beginning of the development pro-
cess. All four of us were to work together on the scanner and the parser. Once
these were in relatively good shape, we split the work:

Nir Grinberg probabilistic functionality, test programs, code generation
Diana Liskovich Input and Output, code generation
Sam Tkach parsing, code generation, and semantic checking
Andrew Wong tests and documentation

Table 5: Project Responsibilities

4.2 Timeline

6.17.15 Scanner and Parser built
6.24.15 Hello World successfully compiled
6.25.15 Java generation for general programs
7.1.15 Generation of probabilistic code
7.3.15 Semantic checking completed

Table 6: Project Timeline

4.3 Development Environment

We each used our own preferred development environment, as well as the Unix
command line, since we all use either Mac or Linux. Text editors like vim and
sublime were our main platforms for writing Ocaml code.

4.4 Programming Style Guide

Here, we define certain useful practices to make code written in Probl easy to
read and understand. The fixed program structure in our language goes a long
way in forcing the programmer to lay out code sensibly. The other main philo-
sophical point here is ”verbose” programming– using whitespace and splitting
statements onto multiple lines. While this is not strictly necessary, it makes un-
derstanding code blocks (especially those that make up the body of distribution
estimation functions, which can be heavy on arithmetic calculations) somewhat
easier. This includes giving curly braces their own lines surrounding blocks, and
including whitespace in between sections of code that are conceptually distinct.

4.5 Project Log

See section 4.2 for an overview, or see Appendix B for the full git log.

15

5 Architectural Design

5.1 Structure

The following is a flow diagram showing the modules that are included in our
translator’s pipeline and the order in which they interact with one another.

|--> SEMANTIC CHECKER

SCANNER --> PARSER --> AST --|

|--> GENERATOR

5.2 Inter-Component Interfaces

The components of our translator follow a linear path of interaction. The scan-
ner tokenizes the source code, and outputs this to the parser, which constructs
the abstract syntax tree for the language based on the grammar and rules spec-
ified. Once the tree is built, it is passed to the generator and the semantic
checker. The semantic checker traverses the AST looking for errors such as type
mismatches, undeclared/previously declared functions and variables, and mak-
ing sure expressions are of the proper type in specific situations (e.g.- return
type, loop statements, conditionals). It then reports these errors, and the gen-
erator creates a Java program by traversing the tree and using string generation
rules.

5.3 Component Implementation Roles

Scanner All
Parser Nir, Sam, Diana
AST Sam, Nir, Diana
Semantic Checker Sam
Generator Sam, Nir, Diana

Table 7: Component Authors

16

5.4 Testing Process

Our tests check both the generated output Java code as well as the output from
execution of the program. Our testing process was somewhat disorganized,
since we struggled getting the basic flow of statements and control of a program
correctly. Until the order of statements is not done it’s hard to write separate
test programs and work incrementally. However, once the basic compiler was
in place, we stated working and testing programs more methodologically with
small incremental changes.

All tests can be found under the folder ’tests’, with 3 files for each test:
test-hello-world.probl is the test program in ProbL, test-hello-world.java is the
desired java output and test-hello-world.out is the desired output from the pro-
gram. All tests are run through a shell script called ./testall, adapted from the
MicroC script.

5.5 Responsibilities

All tests and scripts in the test suite were written by Nir except for input and
output test written by Diana.

5.6 Sample Test Program

input{}

output{}

fun random_sample(): float {

float u;

u = rand();

if (u<0.5) {

return sqrt(-0.5*3.141593*log(1-(2*u-1)^2));

} else {

return -sqrt(-0.5*3.141593*log(1-(1-2*u)^2));

}

}

model

{

srand(1234);

int i;

i=0;

float avg;

avg=0.0;

while (i<1000) {

avg = avg + random_sample();

i = i+1;

}

print(’close to zero’);

print(avg/1000);

}

17

6 Lessons Learned

The following are individual statements from our team members about our
learning experience during this project.

6.1 Nir Grinberg

Overall, I believe the class gave me the theoretical and practical foundations for
thinking about compilation. It was nice to learn about the theoretical achieve-
ments that made compilation possible and efficient. The use of Ocaml made it
very simple and with relatively smooth process for building a decent compiler.
Working on the project itself was hard - the amount of time it took us to get to
a point where we can divide up the work and progress incrementally was rela-
tively long. Contributed to that are the somewhat cryptic error messages from
Ocaml. In addition, the fact that all of us live and work on different schedules
made it hard to co-locate and work together in person. Nevertheless, I think we
arrived at nice proof-of-concept that definitely taught us a lot.

6.2 Diana Liskovich

This class was an very interesting learning experience, both in terms of new
material, exploring old concepts in new ways, and in terms of project man-
agement and collaboration. Using Ocaml forced me to think differently when
writing code, and deciding on a target language challenged me to think about
the details of C and Java as well as their limitations. In general this was a
huge amount of code to produce, and making sure all of us were able to add
to the source without creating conflicts required planning and communication.
One challenging part of the project was finding ways for us to work together
efficiently even though we all live in different places and have very different
schedules. Various online tools like GitHub and Overleaf were very useful. One
lesson we learned right away was to definitely make smaller increments to our
code and thoroughly test it before moving on. We made the mistake of imple-
menting too much at first, but that guided out work for the rest of the term
where we broke up goals even more and made sure to complete tests before
moving on. Overall working on creating our own language allowed us to learn
a great deal not only about compilers but teamwork as well, and different ways
of thinking. My advice for future groups is to proceed in very small increments,
make sure to have test cases early on, be flexible with the idea of the language,
and make it as easy as possible to communicate with your team members.

6.3 Sam Tkach

Over the course of the term, I think my learning experience could be described in
three ways. First, designing and implementing a programming language would
be a very rewarding process if I had the time to commit to it. Second, working
with a team is difficult if you are not all centrally located. Finally, I shouldn’t
have planned on sleeping at all. Our project was rushed all the way to the
finish, and unfortunately, it shows. My advice to future students would be to
start much earlier than you think you should, and to make sure there is no
miscommunication amongst your teammates as to who is responsible for what.

18

This was definitely a pitfall of ours. Regardless of the mistakes made along the
way, learning how to use Ocaml was probably my favorite part of the class as
someone who hadn’t dabbled in functional programming before this. I certainly
gained an appreciation for the more strictly mathematical paradigm that it has
to offer, and will probably use Ocaml for future projects, which is not something
that I would have guessed at the beginning of the term.

6.4 Andrew Wong

As is very first summer course i have ever taken, this class was a very different
experience. The class was went a lightening speed, which is always difficult when
learning something new. Learning a new language, OCaml, forced me to have a
new perspective when coding and learning about compilers enlightened me on a
topic that I always knew was very crucial to Computer Science, but never really
paid attention to. The key to completing this project was collaboration, and our
team was very successful at using modern online collaboration tools. Working
mostly with GitHub, Overleaf, and Google Docs allowed us to collaborate as
much as possible without getting in each other’s way. One thing i learned was
how simple changing a code generator is. At first, our language was going to
generate C code, but after we ran into many issues, we changed to generating
Java. At first i was very worried, I thought that changing to generating a
completely different language must lead to more issues. Fortunately, i was
incorrect as changing the generator turned out to be simple. My advice for
future groups is to meet more often and regularly in person. Although the
online collaboration tools are great, sometimes what is needed most is multiple
eyes on the same problem and the ability to discuss and brainstorm, which is
very difficult to do over the internet.

19

7 Appendix A: Project Source

scanner.mll

{ open Parser }

rule token = parse

[’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)

| ’(’ { LPAREN }

| ’)’ { RPAREN }

| ’[’ { LSQRPAREN }

| ’]’ { RSQRPAREN }

| ’{’ { LBRACE }

| ’}’ { RBRACE }

| ’;’ { SEMI }

| ’:’ { COLON }

| ’,’ { COMMA }

| ’+’ { PLUS }

| ’-’ { MINUS }

| ’*’ { TIMES }

| ’/’ { DIVIDE }

| ’%’ { MODULO }

| ’^’ { EXPONENT }

| ’=’ { ASSIGN }

| ’~’ { PROBASSIGN }

| "==" { EQ }

| "!=" { NEQ }

| ’<’ { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

| "not" { LOGICALNOT }

| "and" { LOGICALAND }

| "or" { LOGICALOR }

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }

| "fun" { FUNC }

| "return" { RETURN }

| "int" { INT }

| "float" { FLOAT }

| "bool" { BOOLEAN }

| "string" { STRING }

| "enum" { ENUM }

| "input" { INPUT }

| "output" { OUTPUT }

| "model" { MODEL }

| [’0’-’9’]*[’.’][’0’-’9’]+ as lxm { FLOAT_LITERAL (float_of_string lxm) }

20

| [’0’-’9’]+ as lxm { INT_LITERAL(int_of_string lxm) }

| ’\’’([^ ’\’’]* as lxm)’\’’ { STRING_LITERAL(lxm) }

| [’a’-’z’ ’A’-’Z’][’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]* as lxm { ID(lxm) }

| "true" { TRUE }

| "false" { FALSE }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

"*/" { token lexbuf }

| _ { comment lexbuf }

21

parser.mly

%{ open Ast %}

%token SEMI COLON LPAREN RPAREN LBRACE RBRACE LSQRPAREN RSQRPAREN COMMA

%token PLUS MINUS TIMES DIVIDE MODULO EXPONENT ASSIGN PROBASSIGN

%token EQ NEQ LT LEQ GT GEQ

%token RETURN IF ELSE FOR WHILE INT

%token LOGICALNOT LOGICALAND LOGICALOR

%token FUNC

%token INT FLOAT BOOLEAN STRING ENUM

%token INPUT OUTPUT MODEL

%token <int> INT_LITERAL

%token <string> STRING_LITERAL

%token <float> FLOAT_LITERAL

%token <string> ID

%token EOF

%token RETURN

%token TRUE FALSE

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left LOGICALAND LOGICALOR

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE MODULO

%left EXPONENT

%nonassoc UMINUS

%nonassoc LOGICALNOT

%start program

%type <Ast.program> program

%%

program:

/* nothing */ { [], [], [], [] }

| INPUT LBRACE vdecl_opt RBRACE OUTPUT LBRACE vdecl_opt RBRACE fdecl_list

MODEL LBRACE stmt_list RBRACE { $3, $7, $9, $12 }

fdecl_list:

| fdecl_opt { List.rev $1 }

fdecl_opt:

/* nothing */ { [] }

| fdecl_opt fdecl { $2 :: $1 }

22

fdecl:

FUNC ID LPAREN formals_opt RPAREN COLON dtype LBRACE stmt_list RBRACE

{ { fname = $2;

formals = $4;

params = [];

body = $9;

ret_type = $7 } }

| FUNC PROBASSIGN ID LPAREN formals_opt RPAREN COLON actuals_opt LBRACE

stmt_list RBRACE

{ { fname = $3;

formals = $5;

params = $8;

body = $10;

ret_type = Float } }

dtype:

INT { Int }

| FLOAT { Float }

| BOOLEAN { Boolean }

| STRING { String }

| dtype LSQRPAREN INT_LITERAL RSQRPAREN { Array($1, $3) }

formals_opt:

/* nothing */ { [] }

| formal_list { List.rev $1 }

formal_list:

| type_decl { [$1] }

| formal_list COMMA type_decl { $3 :: $1 }

type_decl:

dtype ID { { vname = $2; vtype = $1 } }

vdecl_opt:

vdecl_list { List.rev $1 }

vdecl_list:

/* nothing */ { [] }

| type_decl { [$1] }

| vdecl_list SEMI type_decl { $3 :: $1 }

| vdecl_list COMMA type_decl SEMI { $3 :: $1 }

| vdecl_list SEMI { $1 }

stmt_list:

stmt_list_opt { List.rev $1 }

stmt_list_opt:

/* nothing */ { [] }

23

| stmt_list_opt stmt { $2 :: $1 }

var_list:

ID { [$1] }

| var_list COMMA ID { $3 :: $1 }

stmt:

expr SEMI { Expr($1) }

| RETURN expr SEMI { Return($2) }

| LBRACE stmt_list RBRACE { Block($2) }

| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt

{ If($3, $5, $7) }

| FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt

{ For($3, $5, $7, $9) }

| WHILE LPAREN expr RPAREN stmt { While($3, $5) }

| type_decl SEMI { Vdecl($1) }

| var_list PROBASSIGN ID LPAREN actuals_opt RPAREN SEMI { Pcall($1, $3, $5) }

expr_opt:

/* nothing */ { Noexpr }

| expr { $1 }

expr:

INT_LITERAL { Int_literal($1) }

| FLOAT_LITERAL { Float_literal($1) }

| STRING_LITERAL { String_literal($1) }

| ID { Id($1) }

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }

| MINUS expr %prec UMINUS { Binop(Int_literal(0), Sub, $2) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3) }

| expr EXPONENT expr { Binop($1, Exp, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) }

| expr LT expr { Binop($1, Less, $3) }

| expr LEQ expr { Binop($1, Leq, $3) }

| expr GT expr { Binop($1, Greater, $3) }

| expr GEQ expr { Binop($1, Geq, $3) }

| expr LOGICALAND expr { Binop($1, And, $3) }

| expr LOGICALOR expr { Binop($1, Or, $3) }

| LOGICALNOT expr { Lnot($2) }

| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { Call($1, $3) }

| LPAREN expr RPAREN { $2 }

actuals_opt:

/* nothing */ { [] }

| actuals_list { List.rev $1 }

24

actuals_list:

expr { [$1] }

| actuals_list COMMA expr { $3 :: $1 }

25

ast.ml

type op = Add | Sub | Mult | Div | Exp | Mod | Equal | Neq | Less | Leq | Greater | Geq | And | Or

type dtype =

Int

| Float

| Boolean

| String

| Array of dtype * int

(* | Enum *)

(* | Array of dtype * int *)

type expr =

String_literal of string

| Float_literal of float

| Int_literal of int

| Id of string

| Binop of expr * op * expr

| Lnot of expr

| Assign of string * expr

| Call of string * expr list

| Noexpr

type var_decl = {

vname : string;

vtype : dtype;

}

type stmt =

Block of stmt list

| Expr of expr

| Return of expr

| If of expr * stmt * stmt

| For of expr * expr * expr * stmt

| While of expr * stmt

| Vdecl of var_decl

| Pcall of string list * string * expr list

type func_decl = {

fname : string;

formals : var_decl list;

params : expr list;

body : stmt list;

ret_type : dtype;

}

type program = var_decl list * var_decl list * func_decl list * stmt list

26

generator.ml

open Printf

open Ast

(* primitive types *)

let rec string_of_type = function

Int -> "Integer"

| Float -> "double"

| String -> "String"

| Boolean -> "Boolean"

| Array(t, l) -> string_of_type t ^ "[]"

(* global variable declaration *)

let string_of_vdecl vd = "public static " ^ string_of_type vd.vtype ^ " " ^ vd.vname

^ match vd.vtype with

| Int -> " = 0;\n"

| Float -> " = 0.0;\n"

| Boolean -> " = false;\n"

| String -> " = null;\n"

| Array(t, l) -> " = new " ^ string_of_type t

^ "[" ^ string_of_int l ^ "];\n"

let string_of_formal f = string_of_type f.vtype ^ " " ^ f.vname

(* expressions *)

let rec string_of_expr = function

(* String_literal(l) -> "\"" ^ l ^ "\"" *)

String_literal(l) -> "\"" ^ l ^ "\""

| Float_literal(l) -> string_of_float l

| Int_literal(l) -> string_of_int l

| Id(s) -> s

| Binop(e1, o, e2) ->

(match o with

Exp -> "Math.pow(" ^ string_of_expr e1 ^ "," ^ string_of_expr e2 ^ ")"

| _ ->

string_of_expr e1 ^ " " ^

(match o with

Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"

| Equal -> "==" | Neq -> "!="

| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="

| And -> "&&" | Or -> "||"

| _ -> "") ^ " " ^

string_of_expr e2

)

| Assign(v, e) -> v ^ " = " ^ string_of_expr e

| Lnot(e) -> "!(" ^ string_of_expr e ^")"

| Call(f, el) -> (match f with

27

| "print" -> "System.out.println(" ^ String.concat ", " (List.map string_of_expr el)^")"

| "srand" -> "__rand = new Random(" ^ String.concat ", " (List.map string_of_expr el)^ ")"

| "rand" -> "__rand.nextFloat()"

| "log" -> "Math.log(" ^ String.concat ", " (List.map string_of_expr el)^ ")"

| "sqrt" -> "Math.sqrt(" ^ String.concat ", " (List.map string_of_expr el)^ ")"

| _ -> f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"

)

| Noexpr -> ""

(* statement *)

let rec string_of_stmt = function

Block(stmts) ->

"{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

| Expr(expr) -> string_of_expr expr ^ ";\n";

| Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

| If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

| If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

| For(e1, e2, e3, s) ->

"for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^

string_of_expr e3 ^ ") " ^ string_of_stmt s

| While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

| Pcall(p, f, a) -> let string_of_pcassign pn = pn ^ " = __" ^ f ^ "." ^ pn ^ ";\n" in

f ^ " __" ^ f ^ " = new program." ^ f ^ "();\n"

^ "__" ^ f ^ ".run("

^ String.concat ", " (List.map string_of_expr a) ^ ");\n"

^ String.concat "" (List.map string_of_pcassign p)

| Vdecl(v) ->

string_of_type v.vtype ^ " " ^ v.vname

^ match v.vtype with

| Int -> " = 0;\n"

| Float -> " = 0.0;\n"

| Boolean -> " = false;\n"

| String -> " = null;\n"

| Array(t, l) -> " = new " ^ string_of_type t

^ "[" ^ string_of_int l ^ "];\n"

(* normal fdecl *)

let string_of_rfdecl f = "private static " ^ string_of_type f.ret_type ^ " "

^ f.fname ^ "("

^ String.concat ", " (List.map string_of_formal f.formals)

^ ")\n"

^ "{\n" ^ String.concat "" (List.map string_of_stmt f.body)

^ "}\n"

(* sampling / parameter estimation *)

let sid pn = string_of_expr pn

28

let string_of_param pn = string_of_vdecl { vname = (sid pn) ; vtype = Float }

let string_of_pinit pn = "double[] __" ^ (sid pn) ^ " = new double[500];\n"

^ (sid pn) ^ " = __rand.nextFloat();\n"

let string_of_pincr pn = "__" ^ (sid pn) ^ "[i] = " ^ (sid pn) ^ ";\n"

let string_of_ploop pfd = "for (int i=0; i<500; i++){\n"

^ "for (int j=0;j<10;j++){\n "

^ String.concat "" (List.map string_of_stmt pfd.body)

^ "}\n" ^ String.concat "" (List.map string_of_pincr pfd.params)

^ "}\n"

let string_of_mean pn = (sid pn) ^ " = mean(__" ^ (sid pn) ^ ");\n"

let string_of_pfdecl p = "private static class " ^ p.fname

^ "\n{\n" ^ String.concat ""

(List.map string_of_param p.params)

^ "\n"

^ "public double mean(double[] d) { double sum = 0.0;\n"

^ "for(double i : d) { sum += i; } return "

^ "sum/((double) d.length);\n}"

^ "\npublic void run(" ^ String.concat ", "

(List.map string_of_formal p.formals) ^ ")\n{\n"

^ "double[] res = new double[" ^ string_of_int

(List.length p.params) ^ "];\n"

^ String.concat "" (List.map string_of_pinit p.params)

^ string_of_ploop p

^ String.concat "" (List.map string_of_mean p.params)

^ "\n}\n}"

let string_of_fdecl f = if f.params = [] then

string_of_rfdecl f

else string_of_pfdecl f

let string_array_type = function

Int -> "Integer"

| Float -> "Double"

| String -> "String"

| Boolean -> "Boolean"

| Array(t, l) -> string_of_type t

29

let string_create_arraylist var =

"new ArrayList<" ^ string_array_type var.vtype ^ " >(Arrays.asList(" ^ var.vname ^ "))"

let string_create_var_namemap var = "VALUES_BY_NAME.put(\"" ^ var.vname ^ "\", " ^ string_create_arraylist var ^ ");\n"

let string_create_var_typemap var = "TYPES_OF_VARS.put(\"" ^ var.vname ^ "\", \"" ^ string_array_type var.vtype ^ "\");\n"

let string_convert_to_array var =

var.vname ^ " = ("^ string_of_type var.vtype ^") VALUES_BY_NAME.get(\"" ^ var.vname^ "\").toArray(new " ^ string_array_type var.vtype ^ "[0]);\n"

let string_of_get_input =

"String __csvFile = \"input.csv\";\n

BufferedReader __br = null;\n

String __line = \"\";\n

String __csvSplitBy = \",\";\n

try {\n

ArrayList<String> __variables = new ArrayList<String>();\n

__br = new BufferedReader(new FileReader(__csvFile));\n

int __j = 0;\n

while ((__line = __br.readLine()) != null) {\n

String[] __result = __line.split(__csvSplitBy);\n

if (__j == 0)\n

{ \n

int __size = __result.length;\n

for(int __i=0; __i<__size; ++__i)\n

{\n

if (VALUES_BY_NAME.containsKey(__result[__i]))\n

{

__variables.add(__result[__i]);\n

}

else {__variables.add(\"\");}\n

}\n

++__j;\n

continue; \n

}\n

for(int __i=0; __i < __variables.size(); ++__i) \n

{\n

if (! __variables.get(__i).equals(\"\"))\n

{\n

if(TYPES_OF_VARS.get(__variables.get(__i)).equals(\"Integer\"))\n

{\n

VALUES_BY_NAME.get(__variables.get(__i)).add(Integer.parseInt(__result[__i]));\n

}\n

30

else if(TYPES_OF_VARS.get(__variables.get(__i)).equals(\"Double\"))

{\n

VALUES_BY_NAME.get(__variables.get(__i)).add(Double.parseDouble(__result[__i]));\n

}\n

else if(TYPES_OF_VARS.get(__variables.get(__i)).equals(\"Boolean\"))\n

{\n

VALUES_BY_NAME.get(__variables.get(__i)).add(Boolean.parseBoolean(__result[__i]));\n

}\n

else \n

{\n

VALUES_BY_NAME.get(__variables.get(__i)).add(__result[__i]);\n

}\n

}\n

}\n

}} catch (FileNotFoundException e) {\n

e.printStackTrace();\n

System.out.println(\"ProbL: Error - file not found.\");\n

} catch (IOException e) {\n

//e.printStackTrace();\n

} finally {\n

if (__br != null) {\n

try {\n

__br.close();\n

} catch (IOException e) {\n

//e.printStackTrace();\n

}\n

}\n

}\n"

let imports = "import java.io.*;\nimport java.util.*;\nimport java.lang.*;\n\n"

(* program *)

let string_of_program (input, output, funcs, stmts) =

imports

^ "class program \n{\n"

^ "//input\n" ^ String.concat "" (List.map string_of_vdecl input) ^ "\n"

^ "//output\n" ^ String.concat "" (List.map string_of_vdecl output) ^ "\n"

^ "public static HashMap<String, ArrayList> VALUES_BY_NAME;\n"

^ "public static HashMap<String, String> TYPES_OF_VARS;\n"

^ "private static Random __rand = new Random(System.currentTimeMillis());\n"

^ String.concat "" (List.map string_of_fdecl funcs) ^ "\n"

^ "public static void main(String[] args){\n"

^ "VALUES_BY_NAME = new HashMap<String, ArrayList>();\n"

31

^ "TYPES_OF_VARS = new HashMap<String, String>();\n"

^ String.concat "" (List.map string_create_var_namemap input) ^ "\n"

^ String.concat "" (List.map string_create_var_typemap input) ^ "\n"

^ string_of_get_input ^ "\n"

^ String.concat "" (List.map string_convert_to_array input) ^ "\n"

^ String.concat "" (List.map string_of_stmt stmts) ^ "\nreturn ;\n"

^ "}\n"

^ "}\n"

32

semantics.ml

open Printf

open Ast

exception Error of string

(* types *)

type symbol_table = {

parent : symbol_table option;

mutable variables : Ast.var_decl list;

}

type environment = {

scope : symbol_table;

mutable funcs : Ast.func_decl list; (* always the same- functions are global *)

return_type : Ast.dtype; (* only used inside function definition *)

}

(*built-in functions*)

let core = ["print"; "rand"; "srand"; "sqrt"; "log"]

let rec string_of_type = function

| Int -> "int"

| Float -> "float"

| String -> "string"

| Boolean -> "bool"

| Array(t, l) -> (string_of_type t) ^ "[]"

let rec find_var (scope : symbol_table) name =

try

List.find (fun v -> v.vname = name) scope.variables

with Not_found ->

match scope.parent with

Some(parent) -> find_var parent name

| _ -> raise Not_found

let find_func env name =

if List.mem name core then { fname = name; formals = [];

params = []; body = []; ret_type = Float}

else

List.find (fun f -> f.fname = name) env.funcs

let var_exists (scope : symbol_table) name =

try let _ = find_var scope name in true

with Not_found -> false

let func_exists env name =

33

try let _ = find_func env name in true

with Not_found -> false

(* building environments *)

let init_env : environment =

let s = { parent = None;

variables = [{ vname = "true"; vtype = Boolean};

{vname = "false"; vtype = Boolean}] } in

{ scope = s; funcs = []; return_type = Float; }

let create_f_env env f =

let s = { parent = Some env.scope; variables = env.scope.variables }

in { scope = s; funcs = env.funcs; return_type = f.ret_type }

(* function declarations *)

let check_fname env f =

if not (func_exists env f.fname)

then env.funcs <- (f :: env.funcs)

else raise(Error("function " ^ f.fname ^ " is previously defined."))

(* variable declarations for input and output blocks *)

let vnames l = List.map (fun v -> v.vname) l

let check_vdecl env vd =

if not (List.mem vd.vname (vnames env.scope.variables))

then env.scope.variables <- (vd :: env.scope.variables)

else raise(Error("variable " ^ vd.vname ^ " is previously defined."))

(* expressions *)

let rec check_expr env = function

Int_literal(v) -> Int

| Float_literal(v) -> Float

| String_literal(v) -> String

| Id(v) ->

let vdecl = try

find_var env.scope v

with Not_found ->

raise (Error("undeclared identifiier : " ^ v))

in

vdecl.vtype

| Binop(e1, o, e2) ->

let bool_ops = [Equal; Neq; Less; Leq; Greater; Geq; And; Or] in

if (check_expr env e1) != (check_expr env e2) then

raise(Error("expressions in binary operators should be of equivalent type"))

34

else

if List.mem o bool_ops then Boolean else check_expr env e1

| Lnot(e) ->

if (check_expr env e) != Boolean then

raise(Error("\’not\’ operator was used on a non-boolean

expression"))

else Boolean

| Assign(v, e) ->

if not (var_exists env.scope v) then raise(Error("variable " ^ v ^

"was referenced before declaration"))

else

let vd = find_var env.scope v in

if vd.vtype = check_expr env e then vd.vtype

else raise(Error("type mismatch in assignment : " ^

(string_of_type vd.vtype) ^ " " ^ vd.vname ^ " = "

^ string_of_type (check_expr env e)))

(* try

let vd = find_var env.scope v in

if vd.vtype = check_expr env e then

vd.vtype

else raise(Error("types must match for assignment."))

with Not_found ->

raise(Error("variable " ^ v ^ " assigned before declaration."))

*)

| Call(f, l) -> if not (func_exists env f)

then raise(Error("function " ^ f ^ " is undefined"))

else let fd = (find_func env f) in fd.ret_type

| Noexpr -> Int

(* statements *)

let rec check_stmt env = function

Expr(s) -> check_expr env s ;

| If(e, s1, s2) ->

let et = check_expr env e in

if et != Ast.Boolean then

raise (Error("predicate of if statement must be of type bool"))

else

begin

check_stmt env s1;

check_stmt env s2;

end

| Vdecl(v) ->

if var_exists env.scope v.vname then

raise (Error("previously declared variable : " ^ v.vname))

else

env.scope.variables <- (v :: env.scope.variables); v.vtype

35

| Return(e) ->

let et = check_expr env e in

if et != env.return_type then

raise (Error("return types do not match"))

else et

| For(e1, e2, e3, s) ->

if (check_expr env e1 = Ast.Int) &&

(check_expr env e2 = Ast.Boolean) &&

(check_expr env e3 = Ast.Int)

then

check_stmt env s

else raise(Error("for loop expressions must be of types int, bool,

int ."))

| While(e, s) ->

if check_expr env e != Ast.Boolean then

raise(Error("while loop expression must be of type bool."))

else

check_stmt env s

| Block(l) ->

let helper sl = check_stmt env sl in

let _ = (List.map helper l) in Boolean

| Pcall(p, f, a) -> Array(Float, (List.length p))

(* check a function declaration for errors *)

let read_formals env f =

let fn v = check_vdecl env v in

List.map fn f.formals

let param_name = function

Id(s) -> s

| _ -> ""

let read_params env f =

if f.params != [] then

let fn p =

env.scope.variables <- ({ vname = param_name p; vtype = Float } ::

env.scope.variables)

in List.map fn f.params

else []

let check_fdecl env f =

let e = create_f_env env f (* function body environment *)

in let helper s = check_stmt e s

36

in

begin

check_fname env f;

read_formals e f;

read_params env f;

List.map helper f.body;

end

(* vdecl list and fdecl list *)

let vlist_check env l =

let helper k = check_vdecl env k in

List.map helper l

let flist_check env l =

let helper k = check_fdecl env k in

List.map helper l

let block_check env l =

let helper k = check_stmt env k in

List.map helper l

(* program *)

let check_program p =

let (input, output, funcs, model) = p

and env = init_env in

begin

vlist_check env input;

vlist_check env output;

flist_check env funcs;

block_check env model;

end

37

8 Appendix B: Project Log

commit d2f155c93b63310fffc2defe881f850538dec008

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Thu Jul 2 23:33:57 2015 -0400

All working and clean

commit 7a9073236701e2f45f15b3365729197b3b0ad0a3

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Thu Jul 2 22:45:02 2015 -0400

with working gibbs, but other failures

commit 7618ded163d2ba6b8b67810df6a1cb6903ae98b1

Author: tkach <tkach.sam@gmail.com>

Date: Thu Jul 2 19:42:11 2015 -0400

add command-line args, semantic checking (currently throws warnings but works)

commit 2a70da95d1e54416e9bb426147e9d3b81f8647df

Author: tkach <tkach.sam@gmail.com>

Date: Thu Jul 2 19:28:52 2015 -0400

fix function declaration order

commit d81b26767cf9060afb2f6436a8ecaf69b79aaa42

Author: Diana <diana@Dianas-MBP.home>

Date: Thu Jul 2 09:03:23 2015 -0400

updated generator

commit c449c65d94f8e6dd7e855e103e5f2a08c2fd3636

Author: Diana <diana@Dianas-MBP.home>

Date: Thu Jul 2 08:55:26 2015 -0400

added input processing and test for it

commit ebc00ff3995014ea521019aef0648ba24f2df0ce

Author: Diana <diana@Dianas-MBP.home>

Date: Thu Jul 2 07:19:54 2015 -0400

changed types to class types

commit 260f641b19f4abab721110ba1ebe3281c3b19859

Author: Diana <diana@Dianas-MBP.home>

Date: Thu Jul 2 07:14:55 2015 -0400

changed types to class types

38

commit 993b329ddc98760cd63375118fa1cfe44b060e57

Author: Diana <diana@Dianas-MBP.home>

Date: Thu Jul 2 07:13:24 2015 -0400

changed types to class types

commit cbf6c5f02d0c0e7ba3cbe7b27169b0b5f7745110

Author: tkach <tkach.sam@gmail.com>

Date: Wed Jul 1 16:48:46 2015 -0400

generate java output for gibbs test

commit 429c7b45bcacc91c887cfcfeec1eea642f13466b

Author: tkach <tkach.sam@gmail.com>

Date: Wed Jul 1 13:21:58 2015 -0400

add probabilistic function generation

commit 3d824823c72e4fb126a26c413ac9607876429298

Author: tkach <tkach.sam@gmail.com>

Date: Wed Jul 1 04:55:13 2015 -0400

add parsing and generation for probabilistic features

commit b61014e4c8d0c245017c1e76042fd9b5fb38bab7

Author: tkach <tkach.sam@gmail.com>

Date: Wed Jul 1 03:45:10 2015 -0400

fix statement order, associativity; add some generation

commit 484803e611f35fb63af269dc31ad04e6c0405e14

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Tue Jun 30 21:23:44 2015 -0400

added and/or operators

sample from gamma

gibbs example

commit 8ead1993ea2930d2214700254363ea4b98fb30d5

Author: tkach <tkach.sam@gmail.com>

Date: Tue Jun 30 19:54:41 2015 -0400

fix shift-reduce conflicts

commit 31b2ab42a5ce5f6540ce182bed1b0e3242e26702

Merge: dc72a96 c01b287

Author: tkach <tkach.sam@gmail.com>

Date: Tue Jun 30 19:31:48 2015 -0400

39

Merge branch ’master’ of https://github.com/deeml/ProbL

commit dc72a965ae9d45491b6f5490343802568e6c14ef

Author: tkach <tkach.sam@gmail.com>

Date: Tue Jun 30 19:29:37 2015 -0400

fix reduce-reduce conflicts

commit c01b28739af23f6e4027d0ff3baf76f06d49c729

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Tue Jun 30 02:04:34 2015 -0400

Added support math power operator, log, sqrt

generate samples from Normal distribution

commit 76439fb5f987ad453861ffcdd685fd4d8508898c

Author: tkach <tkach.sam@gmail.com>

Date: Sun Jun 28 01:05:24 2015 -0400

parsing and code generation fixes

commit b2b376ab07d53dd6de66c0b065f085454c07d421

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 27 18:11:11 2015 -0400

added support for random numbers

fixed order of statements

commit d21fd85b23fcec84d35579f624e7363c28407ce9

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 27 17:35:17 2015 -0400

fixed java codegen

updated test suite for using java

added support for floats

commit 4ef709c15ac90e968842eec61063e30a881d103c

Author: tkach <tkach.sam@gmail.com>

Date: Sat Jun 27 17:01:00 2015 -0400

begin java generation

commit 6500eba24af429c75d23b9b0fbe08d0ac7c5d392

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 27 13:42:08 2015 -0400

added testing capabilities: for each test program in tests/*.probl, provide tests/*.c for the expected c code and tests/*.out for expected program output.

commit bfe4207cc09cec862e528bb3f6853ded0b128e33

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

40

Date: Sat Jun 27 11:50:44 2015 -0400

fixed string quotation and removed compiled files from repo

commit f37a60960cf041aaa6f48d94caad2e6268592e06

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 27 11:37:19 2015 -0400

cleaned some redundant files

commit dbdcc2c947d4d129b4dc89a2ed560d8e36808227

Author: tkach <tkach.sam@gmail.com>

Date: Fri Jun 26 23:29:14 2015 -0400

hello world now compiles to C

commit f9cd9355fa2e93ce5c27decdd2c937b1f36af12f

Author: tkach <tkach.sam@gmail.com>

Date: Fri Jun 26 20:42:22 2015 -0400

fully compiles, throws parsing error at runtime

commit 99ccc72328d55e2bae4686ea1e989b437cfbc67f

Author: tkach <tkach.sam@gmail.com>

Date: Thu Jun 25 20:28:10 2015 -0400

debugging full compilation process for hello world

commit f4e13de694296b3ad542fda71e8a1bfef89be1bc

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Wed Jun 24 23:02:12 2015 -0400

first version that actually compiles!!! (nothing tested yet..)

commit 65ad2d41ff34d56f227c71b0261d0e6262b0a7ff

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Wed Jun 24 20:50:28 2015 -0400

fixes to make lex + yak work

commit 52d2c6d3c735df8d92eb308613a1af701383b29f

Author: tkach <tkach.sam@gmail.com>

Date: Tue Jun 23 18:37:05 2015 -0400

work on parser and ast

commit a1b364448a80c3bdfaabf42887fa6c683b5fe9ee

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Mon Jun 22 23:03:16 2015 -0400

41

added types

commit 4d9e6e8a8d40ee1e26402a96422cead63134517c

Author: Diana <diana@dyn-209-2-218-109.dyn.columbia.edu>

Date: Mon Jun 22 23:00:19 2015 -0400

added fdecl stuff

commit efa76f357a36300ce2b32f3773a0a97d9fe1db49

Author: Diana <diana@dyn-209-2-218-109.dyn.columbia.edu>

Date: Mon Jun 22 22:20:29 2015 -0400

some changes

commit 66f4144c05dc1b982d3716800682e469c3789107

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Mon Jun 22 21:46:08 2015 -0400

added keyword model

commit f7fae1a0d864a7c889e8779d0299afced528d79d

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Mon Jun 22 21:38:12 2015 -0400

updated grammar

commit 2e1c9a838d3483f9635e037f9953aa3648a160a7

Author: Diana <diana@dyn-209-2-218-109.dyn.columbia.edu>

Date: Mon Jun 22 21:13:17 2015 -0400

added tokens

commit 21c9765f36fc1cb92be7e214d2aa0db04bba6156

Author: Diana <diana@dianas-mbp.usny.ibm.com>

Date: Tue Jun 16 15:00:51 2015 -0400

added to vdecl

commit 429c67e62686a42fbeb3756472cbfc651b3ebd2b

Author: tkach <tkach.sam@gmail.com>

Date: Sun Jun 14 22:11:14 2015 -0400

fix typos in grammar

commit 084333766500bbc2502d812b365d7b549201dc01

Author: tkach <tkach.sam@gmail.com>

Date: Sun Jun 14 22:00:44 2015 -0400

start work on parser; fix scanner

42

commit 903b408548fdb90c051cb0388d58027b31364f70

Merge: f0023b5 ff9ac94

Author: tkach <tkach.sam@gmail.com>

Date: Sat Jun 13 19:17:41 2015 -0400

Merge branch ’master’ of https://github.com/deeml/ProbL

commit f0023b57e5548babee3d97ad5ba9ecf7044355c3

Author: tkach <tkach.sam@gmail.com>

Date: Sat Jun 13 19:05:51 2015 -0400

string literals and exponents in scanner

commit ff9ac94e9dc5e4494bcac3e75173fee703fc3bea

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 13 18:54:32 2015 -0400

added unary minus operator

commit c656db61965979a1229caef7f030464763c58c7a

Author: deeml <dl2956@columbia.edu>

Date: Sat Jun 13 18:22:56 2015 -0400

changed LITERAL to INT_LITERAL

commit 0b7a0b113c38366b327844c584ba63d82fbc57cf

Author: deeml <dl2956@columbia.edu>

Date: Sat Jun 13 18:21:41 2015 -0400

Added floats

commit 37e44b7c3c4aca7a09976ee04a3e53bd6ed1e4be

Author: tkach <tkach.sam@gmail.com>

Date: Sat Jun 13 18:10:24 2015 -0400

fix string literals for scanner

commit 11b1b49dfe22b05957bc6fb20c48e61acf84e4c1

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 13 18:06:25 2015 -0400

first version of our lecture

commit 03832120a36f85e732c8ca84bd9dc352179ac28e

Merge: 34c1467 f7b92a5

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 13 16:22:27 2015 -0400

Merge branch ’master’ of https://github.com/deeml/ProbL

43

commit 34c1467bf76c6ca57d8763067515a7ff2050850c

Author: Nir Grinberg <grinberg.nir+github@gmail.com>

Date: Sat Jun 13 16:20:16 2015 -0400

initial commit, copying the MicroC example

commit f7b92a5b960ffaab41b2a218d01a18e3f3c0b5a5

Author: deeml <dl2956@columbia.edu>

Date: Sat Jun 13 16:17:45 2015 -0400

Update README.md

commit 24fc0a6788607f3d8d05ff44e3ec9aa3f924408e

Author: deeml <dl2956@columbia.edu>

Date: Sat Jun 13 16:10:15 2015 -0400

Initial commit

44

	Introduction
	Language Tutorial
	Program Structure
	Probabilistic Assignments
	Compilation

	Language Reference Manual
	Types
	Primitive Types
	Collections

	Lexical Conventions
	Control Flow
	Comments
	Identifiers
	Keywords
	Operators
	Constants
	Whitespace
	Scope

	Syntax
	Operators and Symbols
	Function Definitions
	Loops and Conditionals
	Modeling

	Standard Library Functions
	Randomization
	I/O functions
	Miscellaneous

	Sample Programs
	Linear Regression
	Baysian Model of Coin Tosses

	Project Plan
	Team Roles
	Timeline
	Development Environment
	Programming Style Guide
	Project Log

	Architectural Design
	Structure
	Inter-Component Interfaces
	Component Implementation Roles
	Testing Process
	Responsibilities
	Sample Test Program

	Lessons Learned
	Nir Grinberg
	Diana Liskovich
	Sam Tkach
	Andrew Wong

	Appendix A: Project Source
	Appendix B: Project Log

