
ProbL: Probabilistic Modeling Language

Language Reference Manual

Nir Grinberg, Andrew Wong, Diana Liskovich, Sam Tkach
{ng2470,aw2192,dl2956,st2794}@columbia.edu

June 16, 2015

1

Contents

1 Introduction 3

2 Types 3
2.1 Primitive Types . 3
2.2 Collections . 4

3 Lexical Conventions 4
3.1 Control Flow . 4
3.2 Comments . 4
3.3 Identifiers . 5
3.4 Keywords . 5
3.5 Operators . 5
3.6 Constants . 5
3.7 Whitespace . 6
3.8 Scope . 6

4 Syntax 6
4.1 Operators and Symbols . 6
4.2 Function Definitions . 7
4.3 Loops and Conditionals . 7
4.4 Modeling . 7

5 Standard Library Functions 8
5.1 Randomization . 8
5.2 I/O functions . 8
5.3 Miscellaneous . 9

6 Sample Programs 9
6.1 Linear Regression . 9
6.2 Baysian Model of Coin Tosses . 9

2

1 Introduction

The vast amounts of data readily available for processing (a.k.a the buzz around
“Big Data”) have created an even greater need for careful modeling and anal-
ysis of these large datasets. One of the most common techniques for modeling
data is using probabilistic models, in particular, using Directed Graphical Mod-
els (DGM’s), which describe the dependencies between random variables in a
probabilistic model. DGM’s are Directed Acyclic Graphs (DAG’s) where nodes
are random variables and directed edges, connecting node u to v, represent
parenting such that: P (u, v) = P (u)P (v|u). Despite the somewhat confining
definition, DGM’s are suitable for modeling a wide range of important artificial
intelligence and machine learning models: from generalized linear regression,
factor analysis and PCA, through hidden markov models, time-series models,
Kalman filters, Bolzman Machines and hierarchical mixture models.

Still, specifying a probabilistic graphical model in C, Java or even R is not
native to the language, which oftentimes implies that people re-implement com-
mon statistical inference algorithms (e.g. Gibbs Sampling) for each model. The
use of third-party packages like mcmc in R is restrictive and does not easily
allow for user-defined distributions or functions. Third-party modeling software
such as WinBUGS [1] does allow for model specification, but suffers from the
same restrictive shortcomings as mentioned before.

2 Types

2.1 Primitive Types

• int - The 32-bit int data type can hold integer values in the range of
-2,147,483,648 to 2,147,483,647.

• float - The float data type stores real number values as double-precision
floating-point numbers. Its minimum value is no greater than 1e37 and
its maximum value is no less than 1e37.

• string - The string data type represents a sequence of characters.

• bool - The bool data type represents a boolean value. It takes one of two
values: true or false.

• enum - The enum data type represents a variable that takes one value
from a pre-defined set of values.

Here are some examples of declaring and defining a variable of type int:

int i = 100 ;

Here are some examples of declaring and defining a variable of type float:

f loat f = . 1 0 1 ;

Here are some examples of declaring and defining a variable of type string:

s t r i n g s = ’ abc ’ ;

Here are some examples of declaring and defining a variable of type bool:

3

bool b = true ;
bool b = f a l s e ;

Here are some examples of declaring and defining an enum:

enum DIRECTIONS = {north , south , west ea s t } ;
enum DIRECTIONS = {north , south , west , e a s t } d i r ;
enum DIRECTIONS d i r = north ;

2.2 Collections

• array - The array data structure allows you store one or more elements
consecutively in memory. Array elements are indexed beginning at posi-
tion 0. Arrays can be one dimensional or two dimensional.

Here are some examples of declaring and defining an array:

int a [3] = [1 0 , 20 , 3 0] ;
bool b [2] [2] = [[true , t rue] , [f a l s e , f a l s e]] ;
b = [[true , t rue] , [f a l s e , f a l s e]] ;
a [1] = 5 ;
b [0] [0] = f a l s e ;

3 Lexical Conventions

The objective of ProbL is to allow for easy specification of Directed Graphical
Models and efficient inference of such models.

3.1 Control Flow

ProbL would support standard looping, conditional statements and block con-
trol flows as in C. The table below summarizes this.

; end line
/* */ begin/end comment block
for, while standard looping constructs
if, else standard conditional statement
{ } code block start and end (respectively)

Table 1: Control Flow

3.2 Comments

ProbL has the same multi-line comment methods as C.

4

3.3 Identifiers

Identifiers are used to create variables and functions. Each identifier will be a
combination of digits, letters, and symbols. Letters can be lowercase or upper-
case ASCII characters, ProbL will be case sensitive. Digits will be the ASCII
characters of 0-9.

3.4 Keywords

ProbL reserves the following words for various purposes. As such, they should
not be used as identifiers.

int data type for an integer
float data type for a floating point number
enum data type taking one value from a pre-defined set of values.
string data type for a sequence of ASCII characters
if, else conditional statement
bool data type for a Boolean value
true, false boolean literals
while execute and loop the contents until the condition is false
and, or, not boolean logical operators
fun defines a standard function taking arguments and returning

a value of a given type
print prints information to standard out
return returns a value
input, output, model denote data, parameters and model section of the program

Table 2: Keywords

3.5 Operators

Our most important operator is the ∼ operator, which defines the distribution
of a random variable. For instance, in the sample program below we define y to
be normally distributed using the ∼ operator with parameters that correspond
to a linear regression model. The operators are:

!=, ==, <, <=, >, >= Numerical relational
+, -, *, /, %, ˆ Arithmetic
and, or, not Logical
∼ Sample a value from the distribution on the RHS
= Assignment

Table 3: Operators

Mathematical operators act differently in the context of the ∼ operator.

3.6 Constants

Constants are Boolean types or sequences of digits. For a Boolean type, a
constant is true or false. For a sequence of digits, a minus sign indicates negative
value.

5

3.7 Whitespace

Blank characters represent Whitespace. Whitespace is ignored by the compiler
and is used to separate tokens from one another, unless they are inside a string
literal of course.

3.8 Scope

Scope of variables is straightforward in ProbL. If a variable is declared outside
a block (i.e.- loop, conditional, or function), it is considered as a global variable
in that file. Variables declared inside blocks are local to those blocks. In nested
blocks, variables can be referenced in the block in which it was defined as well
as in any block inside that block.

4 Syntax

Much of the ProbL syntax is similar to that of C. Function definitions, condi-
tional statements, and loops work largely the same way. There are, however,
several syntactic qualities unique to ProbL. The following sections will cover the
syntax for all aspects of the language.

4.1 Operators and Symbols

Assignment in ProbL works as follows. The = operator is used for all non-
probabilistic datatypes, while the ∼ operator is used to assign a distribution
to a random variable or to link random variables conditionally. Probabilistic
assignment is evaluated differently from regular assignment in a few ways.

y ~ distribution(/* parameters */); /* sets the distribution of y */

z ~ y; /* sets z to be conditioned on y */

Arithmetic symbols for addition, subtraction, multiplication, division, and
exponentiation are binary operators. So are the two assignment operators, and

The following are miscellaneous (non-operator) symbols used for various
things in the language:

/* */ begin and end comment block
; signifies end of a line of code
: used in function declaration
, used to separate arguments, elements of collections
{ } begin or end a block of code, define enums
() used for arithmetic grouping, functions, loops, and conditionals
[] used for array element access and instantiation, define collections
’ ’ used to denote string literals

Table 4: Symbols

6

4.2 Function Definitions

Functions are defined in the following form. When writing a function, use the
”return” keyword to make it return a value.

fun funct ion name (type1 arg1 , type2 arg2 , . . .) : r e tu rn type
{

/∗ . . . f unc t i on code here . . . ∗/
return output va lue ;

}

All functions must return a value.

4.3 Loops and Conditionals

ProbL supports for and while loops as well as if-else statements similar to those
in C. while and if take a boolean expression, and for uses a more complicated
syntax. Here is an example:

f o r (i n t i ; i <10 ; i = i + 1) /∗ i t e r a t e i n t i from 0 to 10 ∗/
{ /∗ with step s i z e 1 ∗/

i n t j = 0 ;
whi l e (j < i)
{

j = j + 1 ;
}

i f (j == i)
{

j = j − 1 ;
}
e l s e
{

j = i ;
}

}

4.4 Modeling

The core functionality of the language is its modeling capabilities. Each program
needs to have a modeling block, which defines the graphical model to apply to
data. Using the optional ”input” and ”output” keywords we let programmers
of ProbL specify what data to use and which parameters to estimate. Since
reading input and estimating parameters is the core of our language we’ll provide
standard ways for our users to read in and output a csv file in a simple format.
Once compiled, executing a program that uses the optional input and/or output
blocks would require an argument passed in that specify where in the file system
the input/output should be. For instance, here is the skeleton of a program that
makes use of these features on 2 arrays of data, x and y:

7

input {
/∗ data ∗/

bool [] x ;
int [] y ;

}
output {

/∗ v a r i a b l e d e c l a r a t i on s o f parameters to e s t imate ∗/
}
model {

y ˜ /∗ d i s t r i b u t i o n func t i on to use f o r e s t ima t ion ∗/
}

This would return an array of float containing the estimated parameters in
the order in which they were declared. These features can also be used outside
of a function. See the sample program for a concrete example.

5 Standard Library Functions

ProbL provides a minimal set of functions that are at the core of any statisti-
cal model represented and inferred using ProbL. These include the basic rand

function to generate random samples from a uniform distribution, basic I/O
functions and a len function to find the length of an array or a string.

5.1 Randomization

The most essential building block for randomization is the function rand:

• rand():float - generates a float in the range 0 to 1 uniformly at random

• srand(int seed):int - initialize the pseudo-random process using the
provided seed.

Using these building blocks, more complex statistical distributions can be
defined. A common sampling technique is using the inverse cumulative distri-
bution function (CDF) with a uniform sample from [0, 1], which can be easily
obtained using rand.

5.2 I/O functions

We will support a few simple I/O functions:

• print(string str):int - print the provided string to programs output.

• open(string filename, string mode):int - returns a file descriptor

for the function opened in the specified mode (‘r’ for reading text files or
’w’ for writing text files).

• close(int file):int - closes the file specified using file.

• read(int file):string - read till the end the previously opened file.

• write(int file, string content):int - writes content into previ-

ously opened file.

8

5.3 Miscellaneous

• len(string str):int - returns the length of the provided string.

• len(int[] a):int - returns the length of the first dimension of an array
(of integers in this example).

6 Sample Programs

6.1 Linear Regression

Below is an example program that given two vectors (x and y) of observed
variables would infer the parameters of the linear regression model (a, b and
sigma):

input {
f loat [] x ;
f loat [] y ;

}
output {

f loat a ;
f loat b ;
f loat sigma ;

}
model {

y ˜ norm(a + b ∗ x , sigma) ;
}

6.2 Baysian Model of Coin Tosses

Below is an example program that given a vector (y) of observed outcomes of a
coin toss infers the probability the coin is biased (theta):

input {
bool [] y ;

}
output {

f loat theta ;
}
fun b e t a d i s t (f loat a , f loat b) : f loat {

/∗ implementat ion o f the be ta d i s t r i b u t i o n , ∗/
/∗ re turns a number in (0 ,1) ∗/

}
fun gamma dist (f loat alpha , f loat beta) : f loat {

/∗ implementat ion o f the gamma d i s t r i b u t i o n , ∗/
/∗ re turns a number in (0 , i n f) ∗/

}
fun binomial (f loat theta) : bool {

/∗ implementat ion o f the b inomia l d i s t r i b u t i o n , ∗/
/∗ re turns a boo lean . ∗/

}

9

model {
a ˜ gamma dist (0 . 5 , 0 . 8) ;

b ˜ gamma dist (1 . 0 , 2 . 0) ;
theta ˜ b e t a d i s t (a , b) ;

y ˜ binomial (theta) ;
}

References

[1] David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter.
Winbugs-a bayesian modelling framework: concepts, structure, and extensi-
bility. Statistics and computing, 10(4):325–337, 2000.

10

	Introduction
	Types
	Primitive Types
	Collections

	Lexical Conventions
	Control Flow
	Comments
	Identifiers
	Keywords
	Operators
	Constants
	Whitespace
	Scope

	Syntax
	Operators and Symbols
	Function Definitions
	Loops and Conditionals
	Modeling

	Standard Library Functions
	Randomization
	I/O functions
	Miscellaneous

	Sample Programs
	Linear Regression
	Baysian Model of Coin Tosses

