Programming Languages and Translators

Stephen A. Edwards

Columbia University

Summer 2015

Pieter Bruegel, The Tower of Babel, 1563

Instructor and Schedule

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
http://www.cs.columbia.edu/~sedwards/
462 Computer Science Building

Lectures: Mondays and Wednesdays, 5:30-8:40 PM
May 27 - July 2
Final: Wednesday, July 1
Presentations: Thursday, July 2
Final project reports: Thursday, July 2

Summer semester goes by very quickly.
Do everything as early as you can.
You will not have time to catch up.

Objectives

Theory

- Principles of modern programming languages
- Fundamentals of compilers: parsing, type checking, code generation
- Models of computation

Practice: Semester-long Team Project

- Design and implement your own language and compiler
- Code it in the OCaml functional language
- Manage the project and your teammates; communicate

Quasi-required Text

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 2006. Second Edition.

Bug Al about all bugs.
You can get away with the first edition.

Compilers
 Principles, Techniques, \& Tools

Assignments and Grading

50\% Programming Project
40\% Final
10\% Individual homework

Project is most important, but most students do well on it. Grades for tests often vary more.

Prerequisites

COMS W3157 Advanced Programming

- How to work on a large software system in a team
- Makefiles, version control, test suites
- Testing will be as important as development

COMS W3261 Computer Science Theory

- Regular languages and expressions
- Context-free grammars
- Finite automata (NFAs and DFAs)

Collaboration

Collaborate with your team on the project.
Do your homework by yourself.
Tests: Will be closed book with a one-page "cheat sheet" of your own devising.

Don't be a cheater (e.g., copy from each other):
If you're dumb enough to cheat, I'm smart enough to catch you.

Every term I've caught cheaters and sent them to the dean. Please try to break my streak.

The Project

The Project

Design and implement your own little language.
Five deliverables:

1. A proposal describing your language
2. A language reference manual defining it formally
3. A compiler for it, running sample programs
4. A final project report
5. A final project presentation

Teams

Immediately start forming four-person teams
Each team will develop its own language
Assign each team member a specific role

Role

Manager
Language Guru
System Architect
Verification \& Validation

Responsibilities

Timely completion of deliverables
Language design
Compiler architecture, environ.
Test plan, test suites

First Three Tasks

1. Decide who you will work with You'll be stuck with them for the term; choose wisely.
2. Assign a role to each member Languages come out better from dictatorships, not democracies.
3. Select a weekly meeting time Harder than you might think.
[^0]
Project Proposal

Describe the language that you plan to implement.
Explain what sorts of programs are meant to be written in your language
Explain the parts of your language and what they do Include the source code for an interesting program in your language
2-4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your language.

Follow the style of the C language reference manual (Appendix A of Kernighan and Ritchie, The C Programming Langauge; see the class website).

Brian W.Kernighan • Dennis M. Ritchie

Final Report Sections

Section	Author
Introduction	Team
Tutorial	Team
Reference Manual	Team
Project Plan	Manager
Language Evolution	Language Guru
Translator Architecture	System Architect
Test plan and scripts	Tester
Conclusions	Team
Full Code Listing	Team

Due Dates

Proposal June 3 soon

Reference Manual June 15

Final Report July 2

Design a language?

A small, domain-specific language: awk or PHP, not Java or C++.

Examples from earlier terms:
Geometric figure drawing language
Matlab-like array manipulation language
Quantum computing language
Screenplay animation language
Escher-like pattern generator
Music manipulation language (harmony)
Mathematical function manipulator
Simple scripting language (à lá Tcl)

Three Common Mistakes to Avoid

Configuration File Syndrome

- Must be able to express algorithms, not just data
- E.g., a program like "a bird and a turtle and a pond and grass and a rock," is just data, not an algorithm

Standard Library Syndrome

- Good languages express lots by a combining few things
- Write a standard library in your language
- Aim for Legos, not Microsoft Word

Java-to-Java Translator Syndrome

- A compiler mostly adds implementation details to code
- Your compiler's output should not look like its input
- Try your best not to re-invent Java

What I'm Looking For

Your language must be able to express different algorithms

- Avoid Configuration File Syndrome. Most languages should be able to express, e.g., the GCD algorithm.

Your language should consist of pieces that can mix freely

- Avoid Standard Library Syndrome. For anything you provide in the language, ask yourself whether you can express it using other primitives in your language.

Your compiler must lower the level of abstraction

- Don't write a Java-to-Java translator. Make sure your compiler adds details to the output such as registers, evaluation order of expressions, stack management instructions, etc.

What's in a Language?

Components of a language: Syntax

How characters combine to form words, sentences, paragraphs.

The quick brown fox jumps over the lazy dog.
is syntactically correct English, but isn't a Java program.

```
class Foo {
    public int j;
    public int foo(int k) { return j + k; }
}
```

is syntactically correct Java, but isn't C.

Specifying Syntax

Usually done with a context-free grammar.
Typical syntax for algebraic expressions:

$$
\begin{array}{rcl}
\text { expr } & \rightarrow & \text { expr + expr } \\
& \text { expr - expr } \\
& \text { expr } * \text { expr } \\
: & \text { expr / expr } \\
& \text { digit } \\
& \text { (expr) }
\end{array}
$$

Components of a language: Semantics

 What a well-formed program "means."The semantics of C says this computes the nth Fibonacci number.

```
int fib(int n)
{
    int a = 0, b = 1;
        int i;
        for (i = 1 ; i< n ; i++) {
            int c = a + b;
            a = b;
            b = c;
    }
    return b;
}
```


Semantics

Something may be syntactically correct but semantically nonsensical

The rock jumped through the hairy planet.
Or ambiguous
The chickens are ready to eat.

Semantics

Nonsensical in Java:

```
class Foo {
    int bar(int x) { return Foo; }
}
```

Ambiguous in Java:

```
class Bar {
    public float foo() { return 0; }
    public int foo() { return 0; }
}
```


Great Moments in Evolution

Great moments in evolution

Assembly Language

Before: numbers
55
89E5
8B4508
8B550C
39D0
$740 D$
39D0
7E08
29D0
39D0
$75 F 6$
C9
C3
$29 C 2$
EBF6

After: Symbols

```
gcd: pushl %ebp
        movl %esp, %ebp
        movl 8(%ebp), %eax
        movl 12(%ebp), %edx
        cmpl %edx, %eax
        je .L9
.L7: cmpl %edx, %eax
        jle .L5
        subl %edx, %eax
.L2: cmpl %edx, %eax
        jne .L7
.L9: leave
        ret
.L5: subl %eax, %edx
        jmp .L2
```


FORTRAN

Before
gcd: pushl \%ebp movl \%esp, \%ebp movl 8(\%ebp), \%eax movl 12(\%ebp), \%edx cmpl \%edx, \%eax je .L9
.L7: cmpl \%edx, \%eax jle .L5 subl \%edx, \%eax
.L2: cmpl \%edx, \%eax jne .L7
.L9: leave ret
.L5: subl \%eax, \%edx jmp .L2

After: Expressions, controlflow

10 if (a .EQ. b) goto 20 if ($a . L T$. b) then
$a=a-b$
else
$b=b-a$
endif
goto 10
20 end

COBOL

Added type declarations, record types, file manipulation

```
data division.
file section.
* describe the input file
fd employee-file-in
label records standard
block contains 5 records
record contains 31 characters
data record is employee-record-in.
01 employee-record-in.
    02 employee-name-in pic \(x(20)\).
    02 employee-rate-in pic 9(3)v99.
    02 employee-hours-in pic 9(3)v99.
    02 line-feed-in pic \(x(1)\).
```


LISP, Scheme, Common LISP

Functional, high-level languages

```
(defun gnome-doc-insert ()
    "Add a documentation header to the current function.
Only C/C++ function types are properly supported currently."
    (interactive)
    (let (c-insert-here (point))
    (save-excursion
        (beginning-of-defun)
        (let (c-arglist
            c-funcname
            (c-point (point))
            c-comment-point
            c-isvoid
            c-doinsert)
            (search-backward "(")
            (forward-line -2)
            (while (or (looking-at "^$")
                    (looking-at "^ *}")
                        (looking-at "^ \\*")
                        (looking-at "^#"))
                (forward-line 1))
```


APL

Powerful operators, interactive language, custom character set
[0]

```
Z+GAUSSRAND N;B;F;M;P;Q;R
```

[1] AReturns ω random numbers having a Gaussian normal distribution
[2] A (with mean 0 and variance 1) Uses the Box-Muller method.
[3] A See Numerical Recipes in C, pg. 289.
[4] A
[5] $\quad Z+20$
[6] M^{-}- $1+2 \star 31 \quad$ a largest integer
[7] L1: $\mathrm{Q}+\mathrm{N}-\mathrm{PZ}$ A how many more we need
[8] $\rightarrow(Q \leq 0) /$ L2 \quad a quit if none
[9] $Q+\Gamma 1.3 \times Q \div 2 \quad$ a approx num points needed
[10] $\mathrm{P}^{-} 1+(2 \div \mathrm{M}-1) \times{ }^{-} 1+$? $(0,2) \mathrm{PM}$ a random points in -1 to 1 square
[11] $\mathrm{R}++/ \mathrm{P} \times \mathrm{P} \quad \mathrm{a}$ distance from origin squared
[12] $B+(R \neq 0) \wedge R<1$
[13] $\mathrm{R}+\mathrm{B} / \mathrm{R} \diamond \mathrm{P}+\mathrm{B} \not \subset \mathrm{P} \quad$ a points within unit circle
[14] $\mathrm{F} \leftarrow\left({ }^{-} 2 \times(\oplus \mathrm{R}) \div \mathrm{R}\right) \star .5$
[15] $Z+Z,, P \times F,[1.5] F$
[16] \rightarrow L1
[17] L2: $\mathrm{Z}+\mathrm{N} \uparrow \mathrm{Z}$
[18] A ArchDate: $12 / 16 / 1997$ 16:20:23.170

"Emoticons for Mathematicians"

Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html At right: Datamedia APL Keyboard

Algol, Pascal, Clu, Modula, Ada

Imperative, block-structured language, formal syntax definition, structured programming

```
PROC insert = (INT e, REF TREE t)VOID:
    # NB inserts in t as a side effect #
    IF TREE( }t\mathrm{ ) IS NIL THEN
    t := HEAP NODE := (e, TREE(NIL), TREE(NIL))
    ELIF e < e OF t THEN insert(e, l OF t)
    ELIF e > e OF t THEN insert(e, r OF t)
    FI;
PROC trav = (INT switch, TREE t, SCANNER continue,
                        alternative)VOID:
    # traverse the root node and right sub-tree of t only. #
    IF t IS NIL THEN continue(switch, alternative)
    ELIF e OF t <= switch THEN
        print(e 0F t);
        traverse( switch, r OF t, continue, alternative)
    ELSE # e OF t > switch #
        PROC defer = (INT sw, SCANNER alt)VOID:
        trav(sw, t, continue, alt);
    alternative(e 0F t, defer)
    FI;
```


SNOBOL, Icon

String-processing languages

```
    LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@'
    SP.CH = "+-,=.*()'/& "
    SCOTA = SP.CH
    SCOTA '&' =
    Q = """
    QLIT = Q FENCE BREAK(Q) Q
    ELEM = QLIT | 'L' Q | ANY(SCOTA) | BREAK(SCOTA) | REM
    F3 = ARBNO(ELEM FENCE)
    B = (SPAN(' ') | RPOS(0)) FENCE
    F1 = BREAK(' ') | REM
    F2 = F1
    CAOP = ('LCL' | 'SET') ANY('ABC') |
+ 'AIF' | 'AGO' | 'ACTR' | 'ANOP'
    ATTR = ANY('TLSIKN')
    ELEMC = '(' FENCE *F3C ')' | ATTR Q | ELEM
    F3C = ARBNO(ELEMC FENCE)
    ASM360 = F1 . NAME B
+ ( CAOP . OPERATION B F3C . OPERAND |
+ F2 . OPERATION B F3 . OPERAND)
+ B REM . COMMENT
```


BASIC

Programming for the masses

```
10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT A$
30 IF A$ <> "5" THEN GOTO 60
40 PRINT "GOOD JOB, YOU GUESSED IT"
50 GOTO 100
60 PRINT "YOU ARE WRONG. TRY AGAIN"
70 GOTO 10
100 END
```

Invented at Dartmouth by John George Kemeny and Thomas Eugene Kurtz. Started the whole Bill Gates/ Microsoft thing.

Simula, Smalltalk, C++, Java, C\#

The object-oriented philosophy

```
class Shape(x, y); integer x; integer y;
```

virtual: procedure draw;
begin
comment - get the x \& y coordinates -;
integer procedure getX;
getX := x;
integer procedure getY;
getY := y;
comment - set the x \& y coordinates -;
integer procedure setX(newx); integer newx;
x := newx;
integer procedure setY(newy); integer newy;
y := newy;
end Shape;

C

Efficiency for systems programming

```
int gcd(int a, int b)
{
    while (a != b) {
    if (a>b) a -= b;
        else b -= a;
    }
    return a;
}
```


ML, Miranda, Haskell

Functional languages with types and syntax

```
structure RevStack = struct
    type 'a stack = 'a list
    exception Empty
    val empty = []
    fun isEmpty (s:'a stack):bool =
        (case \(s\)
            of [] => true
                | _ => false)
    fun top (s:'a stack): =
        (case \(s\)
            of [] => raise Empty
            x::xs => x)
    fun pop (s:'a stack):'a stack =
        (case \(s\)
            of [] => raise Empty
            | \(x:\) :xs \(=>x s\) )
    fun push (s:'a stack, \(x:\) 'a):'a stack = x::s
    fun rev (s:'a stack):'a stack \(=\) rev ( \(s\) )
end
```


sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

```
class() {
    classname='echo "$1" | sed -n '1 s/ *:.*$//p'،
    parent='echo "$1" | sed -n '1 s/^.*: *//p'،
    hppbody='echo "$1" | sed -n '2,$p'،
    forwarddefs="$forwarddefs
    class $classname;"
    if (echo $hppbody | grep -q "$classname()"); then
        defaultconstructor=
    else
        defaultconstructor="$classname() {}"
    fi
}
```


VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming C11 (L) TOTAL 85

B	[\square
N0	UNIT	CosT
$\begin{array}{r} 4 \\ 25 \end{array}$		$\begin{array}{r} 556.85 \\ 12489.56 \\ 9.90 \end{array}$
9.7	QTAL	13155.56
		14438.16

Visicalc on the Apple II, c. 1979

SQL

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT, style ENUM('t-shirt', 'polo', 'dress') NOT NULL, color ENUM('red', 'blue', 'white', 'black') NOT NULL, owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id), PRIMARY KEY (id)
);

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', LAST_INSERT_ID()),
(NULL, 'dress', 'white', LAST_INSERT_ID()), (NULL, 't-shirt', 'blue', LAST_INSERT_ID());

Prolog

Logic Language

```
witch(X) <= burns(X) and female(X).
burns(X) <= wooden(X).
wooden(X) <= floats(X).
floats(X) <= sameweight(duck, X).
```

female(girl). \{by observation\}
sameweight(duck,girl). \{by experiment \}
? witch(girl).

[^0]: When I die, I would like the people I did group projects with to lower me in to my grave so they can let me down one last time.

