
COMS W4115
Programming Languages and Translators

Homework Assignment 2

Prof. Stephen A. Edwards Due Jun 29th, 2015
Columbia University at 5:30 PM

Submit your solution on paper at the beginning of class
Write your name and your Columbia ID (e.g., se2007) on

your solutions.
Do this assignment alone. You may consult the instructor

or the TA, but not other students.

1. Scanners

(a) Using Ocamllex-like syntax, write a scanner for C’s
floating point numbers, as defined by Ritchie:

A floating constant consists of an integer
part, a decimal point, a fraction part, an
e, and an optionally signed integer expo-
nent. The integer and fraction parts both
consist of a sequence of digits. Either the
integer part or the fraction part (not both)
may be missing; either the decimal point
or the e and the exponent (not both) may
be missing.

Hint: make sure your scanner accepts constants
such as 1. 0.5e-15 .3e+3 .2 1e5 but not inte-
ger constants such as 42

(b) Draw a DFA for a scanner that recognizes and dis-
tinguishes the following set of keywords. Draw ac-
cepting states with double lines and label them with
the name of the keyword they accept. Follow the
definition of a DFA given in class.

do double if else elsif uint int for
foreach

2. Construct nondeterministic finite automata for the fol-
lowing regular expressions using Algorithm 3.23 (p. 159,
shown in class), then use the subset construction algo-
rithm to construct DFAs for them using Algorithm 3.20
(p. 153, also shown in class).

(a) (x | y x)∗

(b) ((ε | y)x)∗

(c) (x | y)∗xx y

Number the NFA states; use the numbers to label DFA
states while performing subset construction, e.g., like
Figure 3.35 (p. 155).

3. Using the grammar

S → (L) | a
L → L,S | S

(a) Construct a rightmost derivation for ((a), a, a) and
show the handle of each right-sentential form.

(b) Show the steps of a shift-reduce (bottom-up) parser
corresponding to this rightmost derivation.

(c) Show the concrete parse tree that would be con-
structed during this shift-reduce parse.

4. In an assembly-language-like notation (e.g., use MIPS or
a pseudocode of your own choosing), write what an op-
timizing compiler would produce for the following two
switch statements.

switch (a) {
case 4: z = 2; break;
case 5: x = 1; break;
case 6: x = 8; break;
case 8: x = 17; y = 10; break;
case 9: y = 3; x = 5; break;
default: z = 5; break;
}

switch (b) {
case 2: a = 18; break;
case 20: a = 2; break;
case 108: b = 7; c = 10;
case 254: c = 8; break;
default: c = 17; break;
}

(continued on next page)



5. For a 32-bit little-endian processor with the usual align-
ment rules, show the memory layout and size in bytes of
the following three C variables.

union {
struct {
short a; /* 16 bits */
char b; /* 8 bits */

} s;
int c; /* 32 bits */

} u1;

struct {
char a;
short b;
short c;
short d;
char e;

} s1;

struct {
int a;
short b;
char c;
short d;

} s2;

6. Consider the following C-like program.

int w = 10;
int x = 8;

int incw() { return ++w; }
int incx() { return ++x; }

void foo(y, z){
printf("%d\n", y + 1 + y);
x = 7;
printf("%d\n", z);

}

int main() {
foo(incw(), incx()); return 0;

}

What does it print if the language uses

(a) Applicative-order evaluation?

(b) Normal-order evaluation?

2


