
Senet Language Reference Manual

1



Senet Language Reference Manual Problem 1

Program structure

A Senet program is composed of two parts like so:

setup{
...

}
turn{
...

}
The first, setup part, is akin to C’s main function; it is a sequence of statements and control flows, to be

executed until the end of the part is reached. The second part is a sequence of phase definitions, each

describing how to interpret player input to affect the game state.

Everything is an object

In Senet, everything built into the language, and everything the user defines, is an object. This means that

member functions and variables for all variables can be accessed using the dot syntax

VARIABLE.MEMBER

There are four categories of objects: primitive types, classes, functions, and phases.

Primitive types

This is a closed category, no new primitive types can be created.
Type Meaning

int 32-bit integer

char Character

list Linked list

str String (list of char)

bool Boolean (True or False)

set Unique set of objects

void Type of None, a value used to represent the abscence of a value

Classes

Classes are essentially compound, user-defined types. A class object may have multiple class or primitive

type member variables, in addition to functions.

Functions

Functions are callable objects that take as input a list of variables and output exactly one. Functions are

defined using the syntax

TYPE FUNCTIONNAME (TYPE1 VAR1, TYPE2 VAR2, ...) {
...

}

2



Senet Language Reference Manual Problem 1

where the ellipsis in the input list stands in for any number of additional variables, and the ellipsis in the

body stands in for a series of statements, which must end with a return statement returnx;, where x is the

result of the function, of the return type of the function.

Phases

Phases are only defined in the turn part of a program. They are defined using function-like syntax, but

without any return type, and must have at least one “int” input variable, representing the index of the

active player. One phase must be named “begin”, this is called after the setup part is complete. Like

functions, no phase can reach the end of its statements, it must call itself or another phase, or, alternatively,

declare the game over and exit (or restart).

3


