
Towel Reference Manual

Zihang Chen (zc2324) Baochan Zheng (bz2269) Guanlin Chen (gc2666)

October 26, 2015



2



Contents

1 Lexical Elements 5

1.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Punctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Lexical Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Data Types 9

2.1 Primitive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 FixedInts, Ints, Floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Lists and Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 PT Any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Algebraic Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Elements of Programs 11

3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Rules for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Numbers and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.3 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.4 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.5 Literal of Algebraic Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Backquote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 match and if Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6.1 if Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.2 match Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7 Function Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7.1 Tail Recursive Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.8 Bind Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.8.1 Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9 Algebraic Data Type Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.10 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3



4 CONTENTS

4 Examples 19
4.1 Concrete Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Greatest Common Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Advanced Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Backquotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Algebraic Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



Chapter 1

Lexical Elements

1.1 Keywords

Keywords in the Towel programming language is as follows:

if>=0 if>0 if<=0 if<0 if~0 if=0 ift iff ife ifne

match fun bind type also then

The corresponding tokens are:

IFGEZ IFGZ IFLEZ IFLZ IFNEZ IFEZ IFT IFF IFE IFNE

MATCH FUNCTION BIND TYPE ALSO THEN

1.2 Punctuations

Punctuations used in the Towel programming language are as follows:

• Whitespace characters are simply ignored.

• These characters have special meanings in the Towel programming language: ‘ ’ ‘‘ , ; . ( ) [

] \ @ eof. This means that you cannot use these characters in names and atoms. 1

• Any unprintable character is reserved and won’t be used.

Specially,

TERMINATOR ::= [’.’ ’\n’ ’\r’ ’\r\n’ eof]

1.3 Names

Names are used for naming (or to be more precise, referencing to) values. Valid names should not start with
reserved punctuations, lowercased letters, and numbers.

More formally,

unprintable ::= [all the unprintable ASCII characters]

whitespace ::= [’\n’ ’\t’ ’ ’ ’\r’]

reserved_punct ::= [’‘’ ’’’ ’"’ ’,’ ’;’ ’.’ ’\’ ’@’

’(’ ’)’ ’[’ ’]’ ’{’ ’}’ whitespaces unprintables]

valid_punct ::= [’!’ ’~’ ’#’ ’$’ ’%’ ’^’ ’&’ ’*’ ’-’ ’_’ ’+’ ’=’ ’|’

’:’ ’<’ ’>’ ’?’ ’/’]

1In other words, you can use any other punctuation characters in names and atoms.
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6 CHAPTER 1. LEXICAL ELEMENTS

BQUOTE ::= ’‘’

SQUOTE ::= ’’’

DQUOTE ::= ’"’

COMMA ::= ’,’

SEMICOLON ::= ’;’

PERIOD ::= ’.’

SLASH ::= ’\’

AT ::= ’@’

LPAREN ::= ’(’

RPAREN ::= ’)’

LBRACKET ::= ’[’

RBRACKET ::= ’]’

LBRACE ::= ’{’

RBRACE ::= ’}’

digit ::= [’0’-’9’]

hexdigit ::= [’0’-’9’ ’a’-’f’ ’A’-’F’]

bindigit ::= [’0’-’1’]

lc_chars ::= [’a’-’z’]

NAME ::= [^ ’-’ reserved_punct digit lc_chars] [^ reserved_punct]*

1.4 Literals

Most easy-to-use languages support a wide variety of literals (Python is a good example and Java is not).
The Towel programming language supports literals for atoms, integers (fixed)2, floats, strings, and lists.
They are defined as follows (rule for list literals will be revealed later):

ATOM ::= lc_chars [^ reserved_punct]*

signed ::= [’+’ ’-’]

INT ::= signed? (("0d"? digit+) | ("0x" hexdigit+) | ("0b" bindigit+))

dot ::= ’.’

int ::= digit+

frac ::= digit+

exp = ’e’ signed? int

dot_float = ((dot frac) | (int dot frac)) exp?

exp_float = int (dot frac)? exp

FLOAT ::= signed? (dot_float | exp_float)

string_char ::= [^ ’\’ ’’’]

string_esc_seq ::= ’\’ string_char

string_item ::= string_char | string_esc_seq

STRING ::= ’’’ string_item* ’’’

(Rules for strings is from the lexical parsing section of the Python

language reference manual.)

Note that because terminator is also a dot, a float number literal cannot be written as int dot, otherwise
any integer before a period terminator will be scanned as a float. Although it’s feasible to handle this case,
but that involves some more parser rules for integer literals alone.

2Fixed integers are interpreted as signed integers. There is no literal provided for unsigned fixed integers for now.
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1.5 Comments

Comments are defined as follows:

__COMMENTS ::= ’"’ [^ ’"’]* ’"’

1.6 Lexical Error

When the scanner encounters any other character not mentioned above, it will raise a LexicalError excep-
tion.
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Chapter 2

Data Types

Types are important and inferred in Towel. If the type check fails, the compiler will refuse to compile the
program. However, when compilation finishes, all the type information is thrown away.

This chapter covers the basics on types in Towel.

2.1 Primitive Types

Towel provides to the user the following primitive built-in types:

• Atom

• FixedInt

• Unsigned FixedInt

• Int (won’t be implemented until later versions)

• String

• Float

• List

• Tuple

Internally, these types are phony type values bound to names above. For example, Atom binds to the
value type-value:atom so that you can reference to types in Towel.

2.1.1 Atoms

Atoms are special names uniquely bound to integer constants. But they are not comparable to integers.

2.1.2 FixedInts, Ints, Floats

Fixed integers and floats are simply OCaml integers and floats. Ints are signed integers of arbitrary precision
(like those ints in Python). These types are subclass of the class Number. A lot of arithmetic functions take
Numbers as their arguments. However, bitwise functions will take FixedInts as arguments.

There is also an unsigned version of FixedInt. It will be internally interpreted as a Stdint.Uint32 of
library ocaml-stdint.

9



10 CHAPTER 2. DATA TYPES

2.1.3 Strings

Strings are implemented as OCaml strings. String items are surrended by single quote, rather than double
quote.1

2.1.4 Lists and Tuples

Lists and tuples are implemented as OCaml lists. Types of tuples, for instance, PT Tuple1 for 1-element
tuples, are decided at compile time, and cannot be changed later, whereas the lengths of lists are not fixed.

2.2 PT Any

In current version, without generic typing and algebraic types implemented, PT Any is the superclass of the
type of every value in Towel.

2.3 Algebraic Data Types

Users can use the type special form to define custom algebraic data types, see also section 3.9 and chapter 4.
However, type hierarchy between algebraic data types hasn’t been designed yet.

2.4 Functions

The type of functions is a list of types, which consists of the types of input arguments along with the return
type. When applying arguments to functions, if the arguments are not enough (i.e. the caller’s stack exhausts
before all the arguments are satisfied), a partial applied function is returned.

2.5 Type Checking

Type checking is an operation done between two types, and is not commutative. When we say type A is
checked against type B, type checking succeeds under the following circumstances:

• The two type being exactly the same,

• Or, type A is a subclass of type B,

• Or, check the type of each item of type A and type B, if any of the type checkings succeeds, the whole
type checking between type A and type B succeeds.

For a program, each name or value is type checked against the respective argument type of a function
that is applied with the names or values. For example, in the following program:

bind B ’string’

also A fun,

(2.0 B +)

then A.

2.0 and B are applied to +. Because + is of Number -> Number -> Number, so 2.0 is type checked against
the first argument Number type and succeeds, B, a string, is type checked against the second argument Number,
which fails. So the type check of the program fails. Compiler complains about this and exits.

1Because you don’t have to hit the shift key when inputing single quotes. Same goes for brackets.



Chapter 3

Elements of Programs

3.1 Basic Concepts

A Towel program consists of one or multiple so-called words and one terminator. A terminator can be a
period (dot) or the end-of-file character.

When encountered multiple words, they are always evaluated one by one in the order they appear.
Although in most times, Towel remains in a postfix fashion, but for the sake of convenience, some parts of
the grammar is of prefix or infix style (e.g. the bind form and namespaced name invocation).

A word, can be one of the following:

• literal

• name

• sequence

• backquote

• match and if forms

• function form

• bind form

• type declaring form

3.2 Rules for Evaluation

When evaluating a Towel program, each word is evaluated in the original order:

• For integer, float, string, and atom literals, return references to them directly;

• For each list literal, return a reference to the list after you have evaluated each item of the list;

• For a backqoute, return whatever is quoted (without evaluating);

• For a sequence, create a new function out of the sequence and evaluate that function (i.e. evaluate the
sequence on a new stack) and return the TOS of the new stack;

• For a function, apply1 required arguments to it (if not, a backquoted partial applied function will
be returned), then evaluate the return value of the function with the caller’s stack and return the
evaluated value;

1A stack is always created along with a function invocation, this is to avoid the potential corruption of shared stacks.
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• For a name, look up the value it references to, evaluated that value and return the evaluated value.

• For match and if forms, match or test against the TOS and evaluate the word in the matched branch;

• For bind-then form, evaluate the value that gets bound and bind the value evaluated to the name, then
evaluate the then section with current scope.

After evaluating the words, you push the result onto the stack.

3.3 Literal

A literal is a literal value whose type is of the data types we have talked about in chapter 2.

3.3.1 Atoms

You can create atoms by writing any lowercased letter followed by arbitrary length of characters that are
not reserved punctuations and keywords.

Atoms are unique across the entire program. Because atoms are assigned with a unique integer, so you
can have no more than 231 of them in your program.

Atoms are good for pattern matching.2 Note that bool types are implemented as atoms (true\Bool and
false\Bool).

3.3.2 Numbers and Strings

You can create number and string literals by writing like this:

1 -1 2 -3 5 -8 13 -21

1.1e1 -0.1 ’don\’t panic’

3.3.3 Lists

When creating a list literal, you must write a list of words separated with spaces in a pair of brackets, like
the following code:

[arthur-dent ford-prefect betelgeuse]

[Spam Spam Spam]

[Spam ifne (More Spam)‘, (Less Spam)‘]

Note that in the last list literal, there exists an ifne form. This is totally valid, because if forms are
also words, so as long as the type of the value the ifne form evaluates to match, you are good. And you
should be aware that if forms always test against the top element of current data stack, so the name Spam
before ifne has nothing to do with the value the ifne form evaluates to.

3.3.4 Tuples

Tuples are fixed length lists, whereas you can append new items to lists to create new lists. Create tuples
like this:

[\ arthur-dent ford-prefect betelgeuse] "a 3-tuple of type PT_Tuple-3"

[\] "a 0-tuple of type PT_Tuple-0"

You can use tuple in match forms like this:

match [\ a b A], A

This match form matches a 3-tuple and if the first and second element are atom a and b respectively, it
binds the third element to the name A. See also subsection 3.6.2 for more details on match form.

2This idea is from Erlang.
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3.3.5 Literal of Algebraic Type

You can create literals of algebraic type by listing the required parameters in a pair of backet with an at
symbol followed by the left bracket. And creating constructors by concatenating the constructor atom and
the type name with a slash. For instance3:

[@ chapman

[@ cleese

[@ gilliam

[@ idle

[@ jones

[@ palin nil\List]

cons\List]

cons\List]

cons\List]

cons\List]

cons\List]

cons\List

3.4 Sequence

Sequences are short-hand forms for creating anonymous functions with no arguments. You can create a
sequence by writing the function body between a pair of parenthesis.

Towel also provides another kind of sequences, the shared sequences. These kind of sequences share the
same context (such as stack and scope) with the caller. When creating such sequences, you add an at symbol
right after the left parenthesis. For example,

((A B - if>0 1, 0) (A B + if<0 2, 3) Bitand) "non-shared regular sequences"

(A B - (@ if>0, 1, 0) Println) "prints 1 or 0"

You may want to create a shared sequence when defining tail-recursive functions, otherwise, you lose the
advantage of not stacking up contexts.

3.5 Backquote

Towel evaluates and pushes everything it encounters, you can use backquotes the values to prevent Towel
from evaluating them so that Towel pushes them directly onto the data stack. Backquotes are created by
appending a backquote to the values you want to backquote.

You can backquote only limit types of words:

• literals

• names

• sequences

• backquotes

You can create backquoted shared sequence by replacing the parentheses with braces and dropping the
at symbol. See also subsection 4.2.1 and subsection 4.2.2.

3.6 match and if Forms

In order to be a Turing-complete language, one must provide condition branching mechanisms. They are
called if and match forms here in Towel.

3I know this seems ridiculous. But they are (and was) great comedians.
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3.6.1 if Forms

Towel has 10 kinds of if forms for the sake of readability and convenience. They are of the same form, while
differing in the predicate they use.

An if form contains two words separated by a comma. When evaluating an if form, Towel tests the
TOS and see if it satisfies the condition. If the condition is satisfied, the first word (called true branch) is
evaluated and the second word is ignored4, and vice versa. By default, if forms does not consume TOS, see
section 3.10 for more detail.

The predicates used by if forms are as follows:

• if>0, if TOS is a number and greater than 0

• if>=0, if TOS is a number and greater than or equal to 0

• if<0, if TOS is a number and less than 0

• if<=0, if TOS is a number and less than or equal to 0

• if=0, if TOS is a number and equal to 0

• if~0, if TOS is a number and not equal to 0

• ife, if the stack is empty

• ifne, if the stack is not empty

• ift, if TOS is an atom and equal to true

• iff, if TOS is an atom and equal to false

See chapter 4 for examples on if forms.

3.6.2 match Form

A match form is a type of advanced condition branching, which uses instead of simple predicates like greater
than or less than but more complicated ones, for example, whether a value can be deconstructed as a single
element and the rest of the list (like pattern matching x::xs in Haskell). As what if forms do, match forms
also match against TOS.

To use match form, you write the match keyword followed by the pattern-action pairs separated by
semicolons, while patterns and actions are interleaved by commas. To be more intuitive:

match pattern-1, action-1;

pattern-2, action-2;

...

pattern-n, action-n

Each pattern can be a literal, or a list of words. The rules of match form are:

• If a pattern is a simple literal, it matches if TOS is strictly equal to this literal.

• If a pattern is a list or tuple literal, it matches if TOS is a list or tuple respectively, and if corresponding
items are strictly equal; if so, items that are names in pattern will be bound to respective value in
TOS.

• In case of a list of words, the last word of the word list is called a pattern engine.

• If the pattern engine is a name, the name is invoked with the argument of L (note that this does not
pop L off the caller’s stack), then the function bound to the name will return a tuple of values, and
for the rest of words:

4This is basically why you want a designated condition form
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– if the word is a value, the word matches if the value is strictly equal to the corresponding value
in the returned tuple

– if the word is a name, the name is bound to the corresponding value in the returned tuple

If all words match, this pattern matches.

• If the pattern engine is an algebraic data type constructor, the values in the parameter are tested to
see if they are equal (pattern matches if this is true), while the names are bound to the respective
values. This is called deconstruction.

If a pattern matches, the respective action is evaluated. See chapter 4 for a concrete example on pattern
matching in Towel.

Note that actions can only contain certain types of words for the sake of unambiguous grammar:

• name

• backquote

• literal

• sequence

3.7 Function Form

You use function forms to define anonymous functions, you may want to use bind forms jointly to create
recursive functions. To define a function, first type the keyword fun, and a list of argument declarations and
finally a word for the body of the function. You can optionally tag a type to the argument by enclosing the
type in a pair of parentheses after the name of the argument. If not, types will be inferred. If not enough
information was provided and the type cannot be inferred, an error will occur.

Because function form creates and evaluates function in place, the following code is valid5:

fun A B,

(A B fun X, (3 X +))

See chapter 4 for concrete examples.

3.7.1 Tail Recursive Function Calls

Any practical functional programming language provides tail recursion optimization. So does Towel. How-
ever, Towel is unable to identify6 whether a function call is tail recursive, so users are responsible for tagging
tail recursive calls with an at symbol at the end of the name of the function, like this:

bind Loop fun F It End,

(@ - if=0 (It F),

(@ It F F It 1 + End Loop@))

then (("looping" Println) 1 10 Loop).

3.8 Bind Form

Use bind forms to add new name bindings in current scope. Names can be bound to any kind of values such
as functions, atoms, and all kinds of literals. Simply type bind followed by the name and the value. Bind
forms have a compulsory then clause, which is followed by a word. You can do your computation under the
name scope after this name binding in the then clause. Top-level name bindings, i.e. names bound by the
outmost bind form, are visible across modules, you may want to take advantage of this behavior.

If you encountered a situation where names bindings must be done in a cross referencing manner, use
also clause. For example:

5But not semantically correct.
6I admit that it’s not very difficult to implement this, but we are undermanned.
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bind A 5

then bind A (B 4 -)

also B (A 5 +)

then (A B -)

3.8.1 Namespace

Namespace7, or module, in Towel, is a set of names. Mechanisms like this prevent names of various files
from colliding into each other.

To open and close a namespace (in other words, import and unimport a module), use Import and
Unimport function. To invoke a name in a certain namespace, interleave the names with a backslash. You
can invoke a namespace from another namespace, resulting in a chained list of names.

For instance:

bind Library ("library" Import)

then bind Towel Towel\The-guide\Library

"bind the name Towel from namespace The-guide from namespace Library"

then (Towel Println

Library Unimport)

... some more code ...

3.9 Algebraic Data Type Declaration

Algebraic data types will be basically the same with that of OCaml except the syntax is different. The syntax
here in Towel is designed in a postfix fashion. First, use type NAME to bind the type you are declaring to the
name NAME. Then declare constructors using atoms. Before the constructor, put the types of parameters in
a list with an at symbol in the beginning. If the types of parameters are parameterized, put the parameters
in a pair of braces before the type, like this:

type Option [@ a] some, none

type List [@ a {a}List] cons, nil

type BinTree [@ {a}BinTree {a}BinTree] tree, [@ a] leaf

You can only put atoms, parameterized names (potential namespaced) into the parameter list. See also
subsection 4.2.3.

3.10 Switches

Towel provides some switches to change the default behavior of the compiler or the virtual machine:

• hungry

• share-stack

• optimize-seq, on by default

If you want to turn on/off these switches, enter the switch names on first line followed by the word on

and a period, leave an empty line next to it, then go on with your code, like this.

hungry share-stack on.

bind Something-new (1 2 -)

then Something-new.

7Namespace won’t be implement until later versions.
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If hungry is turned on, if and match forms will consume the TOS they test against when the test finishes,
i.e. immediately after falling in particular branches or after failing to fall in any of the branches. This is
useful when you want to be thrifty about stack spaces.

When share-stack is on, every function (including sequence) uses the same stack, you get more classic
stack-based language programming experience8 out of this switch, but you may want to make sure functions
don’t leave extra elements on the stack, so you’d better turn on hungry switch along with this.

If you turn on optimize-seq switch, when you create a sequence as the body of a function, if or match
form, this sequence is optimized to disappear, leaving the body of it as the body of the form, because the
point of putting a sequence here as the form body is purely syntactic: a list of words must be quoted by a
pair of parentheses so that Towel knows where the function body ends.9 However, by doing so, you may risk
polluting the name scopes and this may not be what you want.

8And probably faster execution, because the context switching is done a lot faster without data stacks pushing and popping.
9Not knowing where to end is called ambiguity in compiler jargon.
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Chapter 4

Examples

The traverse tool produces correct syntax tree with these examples. And be aware that these examples
are not guaranteed to run properly with switch hungry and shared-stack turned on.

4.1 Concrete Examples

4.1.1 Quicksort

bind Quicksort fun _,

match

[], [];

Head Tail ::,

(Tail (Head <) Filter Quicksort

[Head]

Tail (Head >=) Filter Quicksort

++3)

then ([5 4 3 2 1] Quicksort).

Note that ++3 is a trinary version of function ++ (list concatenation), you can always replace ++3 with
two ++s. Also the second pattern action is written as a sequence, which creates an anonymous function
whose body is the forms in the sequence, then the anonymous function is evaluted.

4.1.2 Greatest Common Divisor

bind Greatest-common-divisor fun X(Int) Y,

(- if=0 X,

if>0 (X Y - Y Greatest-common-divisor@),

(X Y X - Greatest-common-divisor@))

then (42 24 Greatest-common-divisor).

Note that X and Y are already in the stack by default (because Towel pushes arguments onto stack), so
we can immediately evaluate function -.

Pay attention to the tail recursive call here. And because optimize-seq is on by default, we can use
regular sequence here as the body of the function form and if>0 form.

4.1.3 Fibonacci Numbers

bind Fib fun A B N,

if=0 A, (A B + A 1 N - Fib@)

then (1 1 10 Fib).

Note how tail recursive calls are done by adding an at symbol at the end of Fib.

19
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4.2 Advanced Examples

4.2.1 Backquotes

bind SomeFun fun A,

if~0 +‘, -‘

then bind AnotherFun fun A B,

(A B A SomeFun)

then (1 5 AnotherFun).

A quick explanation: when SomeFun is called with A, it returns either evaluated backquoted name + or
-, in other words, it returns either name + or -.

What the returning actually does is that it cleans up the current function, and pushes whatever is on
top of the stack (a name + or - in this case) of the current function (in this case, it is the stack of SomeFun)
onto the caller’s stack (in this case, it is the stack of AnotherFun). And finally jump to the instruction next
to the last one. So there is a name + or - on top of the function AnotherFun.

And because we are evaluating return values of functions, + and - are evaluated (derefenced to) some
function values, for example fv1:0x0001 and fv2:0x0002. And again because we are evaluating values that
the names are pointing to, one of fv1:0x0001 and fv2:0x0002 is called1 with A and B, thus resulting in
either adding or substracting A and B.

4.2.2 Macro

bind A-Macro fun,

(@ if~0 +, -)‘

also B-Macro fun,

{if~0 +, -}

then bind AnotherFun fun A B,

(A B A-Macro)

then (1 2 AnotherFun).

A quick explanation: (@ if~0 +, -) is returned as we want, so a sequence (which is essentially an
anonymous function that test whether the value on top of the stack is zero), and by adding a @ we define
the sequence to be a shared sequence which shares the same stack with the caller, so the overall effect is like
we have done a code replacement.

B-Macro is a short-hand version of A-Macro.
You can define ++3 we talked about before as follows:

bind ++3 fun, {++ ++}

then ([1 2 3] [2 3 4] [3 4 5] ++3).

4.2.3 Algebraic Data Type

type BinTree [@ {a}BinTree {a}BinTree] tree,

[@ a] leaf

also MyList [@ a {a}MyList] cons,

nil

then bind A [@ [@ [@ 42 nil\MyList] cons\MyList] leaf\BinTree

[@ [@ 42 nil\MyList] cons\MyList] leaf\BinTree]

tree\BinTree

then (A export).

This is equivalent to the following OCaml code:

1It is worth mentioning that because we have exited SomeFun, we are now evaluating the function value with the stack of
AnotherFun
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type ’a bin_tree = Tree of a bin_tree * a bin_tree

| Leaf of a;;

type ’a my_list = Cons of a * a my_list

| Nil;;

let a = Tree(Leaf(Cons(42, Nil)), Leaf(Cons(42, Nil)))
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