

Table of Contents
1 Introduction ... 2
1.1 Interface Model vs. Interface Implementation 3
1.2 Model perception and Model dependence ... 3
1.3 Implementation and Optimization .. 3
2 NyQL: A declarative network programming language 3
2.1 Relational model as a choice for the abstraction layer 3
2.2 Description of NyQL .. 4
2.2.1 Select .. 4
2.2.2 Project ... 4
2.2.3 Union ... 5
2.2.4 Intersection .. 5
2.2.5 Difference .. 6
2.2.6 Cross product .. 6
2.2.7 Joins .. 6
2.2.8 Division .. 7

1 Introduction

Contemporary packet switched networks are
complex and are commonly composed of
multivendor devices such as routers and
switches. One of the main reasons for this
complexity is that multivendor environments on
one hand improve interoperability between
different devices but on the other hand slow down
the process of innovation due to the proprietary
nature of the software operating in these devices.
Consequently packet switched networks are

ossified, severely limiting the research and
development. The so called control planes of
these devices manipulate the forwarding planes
by executing distributed networking protocols
such as Open Shortest Path First. Although most
of these protocols are standardized by such
bodies as Internet Engineering Task Force,
implementation of these protocols in network
equipment is usually proprietary with no APIs
available for extensions. This lack of general
constructs in network equipment forces its
stakeholders such as Internet operators and the
academic community to rely heavily on vendors to
include expected features and protocols in

product roadmaps. For e.g. a firewall application
that filters network traffic based on administrative
rules cannot be extended to support additional
headers unless implemented by the respective
vendor(s).
OpenFlow switch architecture is an attempt to de-
ossify and to decouple the control and data
planes of packet switched networks. An
OpenFlow switch is composed of a control
protocol which is used to manipulate flow and
group tables residing inside the OpenFlow
switches. Flow and group tables are used for
packet lookups and packet forwarding. Tuples in
these tables represent packet matching and
action rules governing the packets traversing
through the respective device(s). As shown in

Figure 1
the

OpenFlow control protocol allows such operations
on flow and group tables as addition, modification
and deletion of entries via the control protocol.
This paradigm of programmable networks fosters
research and development of innovative
applications on one hand however on the other
hand it lifts the abstractions that are provided by
traditional network equipment. This trade off
introduces new challenges facing the networking
community such as network administrators and
architects. We will review a few such challenges
below

Figure 1 : OpenFlow architecture is based on so called standard southbound interface between
OpenFlow controllers and switches, as well as so called northbound interface between OpenFlow
controllers and applications.

1.1 Interface Model vs. Interface
Implementation

SDN controller’s northbound interfaces extend
implementation details such as REST API
messages for realization of network applications.
However, lack of abstract definition of the data
structures and associated operations make it
harder to develop applications for network
administrators. For e.g. network administrators
shouldn’t be concerned with such questions as
the access paths to flow entries in flow tables,
instead they should be equipped with logical
models that abstract implementation aspects of
the northbound interface.

1.2 Model perception and Model
dependence

Separation between NorthBound interface model
and its implementation provides a framework for
users and applications to perceive the data
structures and operations in a consistent manner
without concerning about the implementation
details. This separation is important for not only
the extensibility of the interfaces but also to
prevent changes in API implementation impacting
the applications.

1.3 Implementation and
Optimization

SDN controller’s northbound interfaces do not
provide any constructs for verifying correctness
and generating optimal sequences/types of
messages towards the controller and leave tasks
related to optimization on the network
administrators

2 NyQL: A declarative
network programming
language

2.1 Relational model as a choice
for the abstraction layer

• We argue that the application of Relation
Model is a natural choice for solving the
abovementioned challenges due to the
following properties of relational
databases observed in OpenFlow
framework

• A packet switch network that is composed
of OpenFlow devices may be viewed as a
database of N-ary relations such as flow
and group tables. We call this database
Network Information Base

• All relations in a Network Information Base
are defined over types and values for each
of the attributes in a given relation are
selected from their respective type

• All relations in a Network Information Base
have attributed qualifying the definition of
candidate key

• All relations in a Network Information
demonstrate integrity constraints

2.2 Description of NyQL

NyQL is a declarative programming language
based on the theory of relational algebra. NyQL is
an interpreted language that translates
expressions in to a sequence of NorthBound API
messages, processes the responses and
presents the output to the user(s) or direct it as an
input to another expression in case of nested
expressions. NyQL provides simple yet powerful
constructs which network administrator may use
to query Network Information Base without
needing to pay any attention such details as
which API messages to be used? How to process
each of the responses? Where to store the
responses? How to process the responses to get
the expected output? An expression written in
NyQL takes at least one relation as its operand
and supports different types of unary or binary
operators. These operators are defined below
with example programs. Application of relational
operators such as MINUS, on two relations [flow
tables], would output a relation as a result,
satisfying the closure property of relational
algebra that allows writing recursive expressions.

2.2.1 Select

Select is a unary operator mathematically
represented as σaθvR where ‘a’ is the name of an
attribute, ’b’ is a constant value, θ is binary
operation from a set of {=,! =,<, >, <=,>=} and R is
the relation on which select operator is being
applied. Select operation chooses tuples that
satisfy given conditions. Please note that the
selection operation should not be confused with
the select statement in SQL since the latter is
appropriately presented as projection operator
described in the following section. A few example
operations are show below.

2.2.1.1 Example 1 of select operation

This example shows an expression in which
Flowtable 0 only the rows whose priority attribute
in the given tables is 10 are being selected.

Relational notation NyQL notation

σpriority=10 (Flowtable 0) select from flowtable 0
where priority = 10

2.2.1.2 Example 1 of select operation

This example shows similar query as example 1
except two attributes are provided.

Relational notation NyQL notation

σpriority=10,timeout >0
(flowtable 0)

select from flowtable 0
where priority = 10 and
timeout > 0

2.2.2 Project

Project is a unary operator mathematically
represented as πa1.a2.a3…an R where ‘a’ is the
name of an attributes to be projected and R is the
relation on which project operator is being
applied.

2.2.2.1 Example 1 of project operation

This example shows an expression in which all
columns of flowtable 0 are being returned.

Relational notation NyQL notation

πall (flowtable 0) Project all from
flowtable 0

2.2.2.2 Example of nested expressions
based on select and project

This example is a nested expression based on
two subexpressions. The first subexpression
returns a relation as a result of applying two
conditions. The second subexpression projects all
the attributes of the relation returned by the
subexpression 1. The result of this example will
be rows of flow entries in flowtable 0 whose
priorities are less than 10 and which never expire.

Relational notation NyQL notation

πall (σpriority=10,timeout >0

(flowtable 0))
project all from (select
from flowtable 0 where
priority = 10 and
timeout = 0)

2.2.3 Union

Union is binary operator mathematically
represented as R1 U R2 where both operands
represent a relation. Both operands must be
union compatible such that they must have same
number of attributes and corresponding attributes
must have same types

2.2.3.1 Example of nested expressions
based on select, project and union

As show in the table below the example
expression is composed of two subexpressions.
Furthermore each subexpression is further
composed of a project and a select sub
expression. Both subexpressions retrieve a
relation in which all tuples/flow entries satisfy the
requirements of type IPv4. Union operation on the
returned relation will output another relation
showing all flow entries in flowtable0 or flowtable
1 pertaining to IPv4.

Relational notation NyQL notation

πall (σ etherType=0x800

(flowtable 0))

U

πall (σ etherType":"0x800"

(flowtable 1))

project all from (select
from flowtable 0 where
etherType = 0x800

U

project all from (select
from flowtable 1 where
etherType = 0x800

2.2.4 Intersection

Union is binary operator mathematically
represented as R1 ∩ R2 where both operands
represent a relation. Both operands must be
union compatible such that they must have same
number of attributes and corresponding attributes
must have same types.

2.2.4.1 Example of nested expressions
based on select, project and
intersection

As show in the table below, the expression in the
example is used to retrieve common policies in
both devices related to dropping packets.

Relational notation NyQL notation

πall (σ action=drop (flowtable
0))

∩

πall (σ action=drop (flowtable
1)

project all from (select
from flowtable 0 where
action=drop

∩

project all from (select
from flowtable 1 where
action=drop

2.2.5 Difference

Difference is binary operator mathematically
represented as R1 - R2 where both operands
represent a relation. Difference operator returns a
relation that contains all tuples present in R1 but
not R2. The operands must be union compatible
such that they must have same number of
attributes and corresponding attributes must have
same types.

2.2.5.1 Find out the types of packets being
dropped by switch 1 but not switch 2

Relational notation NyQL notation

π etherType (σ action=drop

(flowtable 0))

-

π etherType (σ action=drop

(flowtable 1)

project etherType from
(select from flowtable 0
where action=drop

∩

project etherType from
(select from flowtable 1
where action=drop

2.2.6 Cross product

Cross product takes at least two operands and is
mathematically represented as R1 * R2. Cross
product operation returns a relation R that include
all the attributes of R1 in the same order as they
appear in R1 followed by all the attributes of R2 in
the same order as they appear in R2. The relation
R contains one tuple <r1, r2> for each pair of
tuples r1 ∈ R1, r2 ∈ R2.

2.2.6.1 Find out the priorities and action
types of flow entries with same
values for match attributes in
flowtable 0 and flowtable 1

Relational notation NyQL notation

π priorities,actions

σ R1.match= R2.match

(flowtable 0 * flowtable1)

project etherType from
(select from flowtable 0
where action=drop

*

project etherType from
(select from flowtable 1
where action=drop

2.2.7 Joins

Joins operator takes at least two operands and is
followed by selections and projections.

2.2.7.1 Conditional Joins

Conditional joins are the most generic type of join
and is represented mathematically as R1 ⋈ condition
R2 or equivalently σ condition (R1 * R2). Hence a
conditional join is equivalent to cross product
followed by a selection.

2.2.7.2 Equijoin

Equijoin is a specialized form of joins represented
mathematically as R1 ⋈ R1.x=R2.x R2 or σ R1.x= R2.x
(R1 * R2). The example shown in section Cross
product is an example of equijoin.

2.2.7.3 Natural Join

Natural Join is the most specialized form of joins.
It is equivalent to an equijoin in which the equality
condition of the selection applies to all of the
attributes with the same names in R1 and R2.

2.2.7.3.1 Example expressions [Conditional
Join]

1. Find out all the flowentries in flowtable0
and flowtable1 where timeout in flowtable0
is greater than that of flowtable 1.
[Conditional Join]

Relational notation NyQL notation

flowtable0 ⋈ R1.timeout >

R1.timeout flowtable1

flowtable0

joins R1.timeout > R1.timeout

flowtable1

2. Find out all identical flow entries in in
flowtable0 and flowtable1

Relational notation NyQL notation

flowtable0 ⋈ flowtable1 flowtable0

joins natural

flowtable1

2.2.8 Division

Division operator takes two relations as its
operands. The must relation must be binary i.e.
must contain exactly two attributes and the
second relation must be unary i.e. must contain
one attribute. The result of division operator is a
relation consisting of all values of one attribute of
the binary relation that match (in the other
attribute) all values in the unary relation.

	1 Introduction
	1.1 Interface Model vs. Interface Implementation
	1.2 Model perception and Model dependence
	1.3 Implementation and Optimization

	2 NyQL: A declarative network programming language
	2.1 Relational model as a choice for the abstraction layer
	2.2 Description of NyQL
	2.2.1 Select
	2.2.1.1 Example 1 of select operation
	2.2.1.2 Example 1 of select operation

	2.2.2 Project
	2.2.2.1 Example 1 of project operation
	2.2.2.2 Example of nested expressions based on select and project

	2.2.3 Union
	2.2.3.1 Example of nested expressions based on select, project and union

	2.2.4 Intersection
	2.2.4.1 Example of nested expressions based on select, project and intersection

	2.2.5 Difference
	2.2.5.1 Find out the types of packets being dropped by switch 1 but not switch 2

	2.2.6 Cross product
	2.2.6.1 Find out the priorities and action types of flow entries with same values for match attributes in flowtable 0 and flowtable 1

	2.2.7 Joins
	2.2.7.1 Conditional Joins
	Conditional joins are the most generic type of join and is represented mathematically as R1 ⋈ condition R2 or equivalently σ condition (R1 * R2). Hence a conditional join is equivalent to cross product followed by a selection.
	2.2.7.2 Equijoin
	2.2.7.3 Natural Join
	2.2.7.3.1 Example expressions [Conditional Join]
	1. Find out all the flowentries in flowtable0 and flowtable1 where timeout in flowtable0 is greater than that of flowtable 1. [Conditional Join]

	2.2.8 Division

