
Fundamentals of Computer Systems
Thinking Digitally

Stephen A. Edwards

Columbia University

Summer 2015



The Subject

s

of this Class

0

1



The Subjects of this Class

0 1



But let your communication be, Yea, yea; Nay, nay: for
whatsoever is more than these cometh of evil.

— Matthew 5:37



Computer Systems Work Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics



Computer Systems Work Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827

Digital Circuits First Half of 3827

Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.



Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2015/3827-summer/

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

462 Computer Science Building

Lectures 5:30–8:40 PM, Tuesdays and Thursdays
825 Mudd
May 26–July 2

Weight What When

40% Homeworks See Webpage
60% Final exam July 2nd

Homework is due at the beginning of lecture.

http://www.cs.columbia.edu/~sedwards/classes/2015/3827-summer/


Rules and Regulations

You may collaborate with classmates on homework.

Each assignment turned in must be unique; work must
ultimately be your own.

List your collaborators on your homework.

Don’t be a cheater.

Final will be closed-book with a one-page “cheat sheet” of
your own devising.



The Text(s): Alternative #1

No required text. There are two recommended alternatives.

I David Harris and Sarah Harris. Digital Design and
Computer Architecture.

Almost precisely right for the scope of this class: digital
logic and computer architecture.



The Text(s): Alternative #2

I M. Morris Mano and
Charles Kime. Logic and
Computer Design
Fundamentals, 4th ed.

I Computer Organization
and Design, The
Hardware/Software
Interface, 4th ed. David
A. Patterson and John L.
Hennessy



th
in

kg
ee

k.
co

m



The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

7 × 102 + 3 × 101 + 0 × 100 = 73010

9 × 102 + 9 × 101 + 0 × 100 = 99010

Why base ten?



Which Numbering System Should We Use? Some
Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60



Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin

0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111



Binary and Octal

D
EC

PD
P-

8/
I,

c.
19

68

Oct Bin

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

PC = 0 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 +

1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

= 2 × 83 + 6 × 82 + 7 × 81 + 5 × 80

= 146910



Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D16 = 12 × 167 + 10 × 166 + 15 × 165 + 14 × 164 +

15 × 163 + 0 × 162 + 0 × 161 + 13 × 160

= 3,405,705,22910

C A F E F 0 0 D Hex
11001010111111101111000000001101 Binary
3 1 2 7 7 5 7 0 0 1 5 Octal



Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5

binary
octal
decimal
hexadecimal

digits?



Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the proces-
sor, e.g., 16, 32, 64

LSB Least Significant Bit (“rightmost”)

MSB Most Significant Bit (“leftmost”)



Decimal Addition Algorithm

1 1

434
+628

1062

4 + 8 = 12

1 + 3 + 2 = 6

4 + 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1

1
434

+628

106

2

4 + 8 = 12

1 + 3 + 2 = 6

4 + 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1

1
434

+628

10

62

4 + 8 = 12

1 + 3 + 2 = 6

4 + 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1 1
434

+628

1

062

4 + 8 = 12

1 + 3 + 2 = 6

4 + 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Decimal Addition Algorithm

1 1
434

+628
1062

4 + 8 = 12

1 + 3 + 2 = 6

4 + 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19



Binary Addition Algorithm

10011

10011
+11001

101100

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

1001

1
10011

+11001

10110

0

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

100

11
10011

+11001

1011

00

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

10

011
10011

+11001

101

100

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

1

0011
10011

+11001

10

1100

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Binary Addition Algorithm

10011
10011

+11001
101100

1 + 1 = 10

1 + 1 + 0 = 10

1 + 0 + 0 = 01

0 + 0 + 1 = 01

0 + 1 + 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11



Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be
represented?



Signed Magnitude Numbers

You are most familiar with this:
negative numbers have a leading −

In binary, a
leading 1 means
negative:

00002 = 0

00102 = 2

10102 = −2

11112 = −7

10002 = −0?

Can be made to work, but addition is
annoying:

If the signs match, add the magnitudes
and use the same sign.

If the signs differ, subtract the smaller
number from the larger; return the sign
of the larger.



One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number.

To negate a number, complement (flip) each bit.

00002 = 0

00102 = 2

11012 = −2

10002 = −7

11112 = −0?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a −0: two
numbers are equal if their bits are the
same or if one is 0 and the other is −0.





Two’s Complement Numbers
Really neat trick: make the most significant
bit represent a negative number instead of
positive:

11012 = −8 + 4 + 1 = −3

11112 = −8 + 4 + 2 + 1 = −1

01112 = 4 + 2 + 1 = 7

10002 = −8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s complement)
then add 1.

Very good property: no −0

Two’s complement numbers are equal if all their bits are the
same.



Number Representations Compared

Bits Binary Signed One’s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1

...
0111 7 7 7 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7

...
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Smallest number
Largest number



Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3 × 101 + 1 × 100 +

4 × 10−1 + 1 × 10−2 + 5 × 10−3 + 9 × 10−4

The same trick works in binary:

1011.01102 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 +

0 × 2−1 + 1 × 2−2 + 1 × 2−3 + 0 × 2−4

= 8 + 2 + 1 + 0.25 + 0.125

= 11.375



Floating-Point Numbers: “Scientific Notation”

Greater dynamic range at the expense of precision
Excellent for real-world measurements

IEEE 754 Single-Precision (32-bit)

Sign 8-bit Exponent 23-bit Fraction

1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= − 1.01100002

implicit

× 2100000012−127

“excess 127”

= −1.375 × 22

= −5.5



Characters and Strings? ASCII

ascii-table.com


