CSEE W3827

Fundamentals of Computer Systems Homework Assignment 1

Prof. Stephen A. Edwards
Columbia University
Due Tuesday, June 9th, 2015 at 5:30 PM

Print this out and turn it in. Enter answers on the computer or manually on the printout.
This homework requires you to use Logisim, which you can download from http://www.cburch.com/logisim/

Name: \square
Uni: \square

1. (5 pts.) What are the values, in decimal, of the following bytes if they are interpreted as 8-bit numbers in

0001001110011010

binary
one's complement
two's complement

\square
2. (5 pts.) Complete the truth table for the following Boolean functions:

$$
\begin{aligned}
& a=X \bar{Y}+\bar{X} Y Z+\bar{X} \bar{Z} \\
& b=(X+\bar{Y})(X+Z)(\bar{X}+Z)
\end{aligned}
$$

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{a}	\mathbf{b}
0	0	0	\square	\square
0	0	1		\square
0	1	0		\square
0	1	1		\square
1	0	0		\square
1	0	1		\square
1	1	0		\square
1	1	1		\square

3. (20 pts.) Consider the function F whose truth table is shown below
(a) Write the function F in
sum-of-minterms form. Two are given.

\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

(b) Fill in this Karnaugh map for F

(c) Use your Karnaugh map to write a minimal sum-of-products representation for F

In Logisim,
(d) Implement the circuit corresponding to your minimal sum-of-products representation. Verify your circuit using Logisim's Combinational Analysis feature (Project \rightarrow Analyze Circuit).

Print your solution and attach it.
(e) Use your Karnaugh map to write a minimal product-of-sums representation for F.

(f) Implement the circuit corresponding to your minimal product-of-sums. Again, verify your circuit.

Print your solution and attach it.
4. (20 pts.) Create a circuit for a 4-to-10 decoder using AND gates and inverters only. Arrange and name the inputs and outputs as shown below. Treat W as the most significant bit. Only one of the outputs should ever be true.

$$
\begin{array}{cl}
W \rightarrow & \rightarrow A 0 \\
X \rightarrow & \rightarrow A 1 \\
Y \rightarrow & \vdots \\
Z \rightarrow & \rightarrow A 9
\end{array}
$$

Implement your circuit in Logisim, verify it, and print and attach it.
5. (15 pts.) In Logisim, implement $F=X Y \bar{Z}+Y Z+\bar{X} Y$ using just constants and
(a) a 3-to-8 decoder (under "Plexers \rightarrow Decoder." Set "include enable" to "No" and note the input wires are a bundle at the bottom) and an OR gate;
(b) an 8 input mux; and
(c) a 4 input mux whose select inputs are X and Y, and an inverter.

Implement each of these circuits in Logisim, verify them, and print and attach them.

$$
\begin{aligned}
& X \rightarrow \\
& Y \rightarrow \\
& Z \rightarrow
\end{aligned} \quad \rightarrow F
$$

6. (15 pts.) Implement an eight-input mux using two-input muxes only (constants are OK).
Arrange your inputs and outputs as shown below.

$$
\begin{aligned}
& A 0 \rightarrow \\
& A 1 \rightarrow \\
& \vdots \\
& A 7 \rightarrow \\
& X \rightarrow F \\
& Y \\
& Z \\
&
\end{aligned}
$$

Here, $A 0$ through $A 7$ are the eight inputs, and X, Y, and Z are the three selects. X is the most significant bit, selecting between, e.g., A0 and A4.
Implement your circuit in Logisim, verify it, and print and attach it.
7. (20 pts.) Implement the combinational portion of a three-bit binary counter with an enable input. Give it four inputs, X, Y, Z, and E, and three outputs A, B, and C.
When E is $0, A, B$, and C should be X, Y, and Z respectively.
When E is $1, A, B$, and C should be X, Y, and Z plus one, with A and X the MSBs.
Your counter should wrap around, i.e., $7+1=0$.
Implement your circuit in Logisim, verify it, and print and attach it.

