Fundamentals of Computer Systems

Combinational Logic

Stephen A. Edwards

Columbia University

Summer 2015

Combinational Circuits

Combinational circuits are stateless.
Their output is a function only of the current input.

Basic Combinational Circuits

Enabler
Encoders and Decoders
Multiplexers
Shifters
Circuit Timing
Critical and Shortest Paths
Glitches
Arithmetic Circuits
Ripple Carry Adder
Adder/Subtractor
Carry Lookahead Adder

Enablers

Overview: Enabler

An enabler has two inputs:

- data: can be several bits, but 1 bit examples for now
- enable/disable: 1 bit on/off switch

When enabled, the circuit's output is its input data. When disabled, the output is 0 .

Enabler Implementation

Note abbreviated truth table: input, A, listed in output column

$E N$	F
0	0
1	A

$E N$	F
0	1
1	A

In both cases, output is enabled when $E N=1$, but they handle the disabled ($E N=0$) cases differently.

Encoders and Decoders

Overview: Decoder

A decoder takes a k-bit input and produces 2^{k} single-bit outputs.

The input determines which output will be 1 , all others 0 . This representation is called one-hot encoding.

1:2 Decoder

The smallest decoder: one bit input, two bit outputs

2:4 Decoder

Decoder outputs are simply minterms. Those values can be constructed as a flat schematic (manageable at small sizes) or hierarchically, as below.

3:8 Decoder

Applying hierarchical design again, the 2:4 DEC helps construct a 3:8 DEC.

Implementing a function with a decoder

E.g., $F=A \bar{C}+B C$

C	B	A	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Warning: Easy, but not a minimal circuit.

Encoders and Decoders

Priority Encoder

An encoder designed to accept any input bit pattern.

I_{3}	I_{2}	I_{1}	I_{0}	V	O_{1}	O_{0}
0	0	0	0	0	X	X
0	0	0	1	1	0	0
0	0	1	X	1	0	1
0	1	X	X	1	1	0
1	X	X	X	1	1	1

$$
\begin{aligned}
& V=I_{3}+I_{2}+I_{1}+I_{0} \\
& O_{1}=I_{3}+\overline{I_{3}} I_{2} \\
& O_{0}=I_{3}+\overline{I_{3}} I_{2} I_{1}
\end{aligned}
$$

Multiplexers

Overview: Multiplexer (or Mux)

A mux has a k - bit selector input and 2^{k} data inputs (multi or single bit).

It outputs a single data output, which has the value of one of the data inputs, according to the selector.

2:1 Mux Circuit

There are a handful of implementation strategies.
E.g., a truth table and k-map are feasible for a design of this size.

S	I_{1}	I_{0}	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2:1 Mux Circuit

There are a handful of implementation strategies.
E.g., a truth table and k-map are feasible for a design of this size.

S	I_{1}	I_{0}	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2:1 Mux Circuit

There are a handful of implementation strategies.
E.g., a truth table and k-map are feasible for a design of this size.

S	I_{1}	I_{0}	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

4:1 Mux Circuit

Muxing Wider Values (Overview)

Muxing Wider Values (Components)

Using a Mux to Implement an Arbitrary Function Version 1

Think of a function as using k input bits to choose from 2^{k} outputs.

$$
\text { E.g., } F=B C+A \bar{C}
$$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Using a Mux to Implement an Arbitrary Function Version 1

Think of a function as using k input bits to choose from 2^{k} outputs.

$$
\text { E.g., } F=B C+A \bar{C}
$$

Using a Mux to Implement an Arbitrary Function Version 2

Can we use a smaller MUX?

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Using a Mux to Implement an Arbitrary Function Version 2

Can we use a smaller MUX?

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Using a Mux to Implement an Arbitrary Function Version 2

Can we use a smaller MUX?

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Using a Mux to Implement an Arbitrary Function Version 2

Can we use a smaller MUX?

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

A	B	F
0	0	0
0	1	C
1	0	\bar{C}
1	1	1

Using a Mux to Implement an Arbitrary Function Version 2

Can we use a smaller MUX?

Instead of feeding just 0 or 1 into the mux, as in Version 1, one can remove a bit from the select, and feed it into the data ports along with the constant.

shifters

Overview: Shifters

A shifter shifts the inputs bits to the left or to the right.

There are various types of shifters.

- Barrel: Selector bits indicate (in binary) how far to the left to shift the input.
- L/R with enable: Two control bits (upper enables, lower indicates direction).

In either case, bits may "roll out" or "wraparound"

Example: Barrel Shifter with Wraparound

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Implementation of Barrel Shifter with Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use muxes to select correct one.

Circuit Timing

Computation Always Takes Time

There is a delay between inputs and outputs, due to:

- Limited currents charging capacitance
- The speed of light

The Simplest Timing Model

- Each gate has its own propagation delay t_{p}.
- When an input changes, any changing outputs do so after t_{p}.
- Wire delay is zero.

A More Realistic Timing Model

It is difficult to manufacture two gates with the same delay; better to treat delay as a range.

- Each gate has a minimum and maximum propagation delay $t_{p(\min)}$ and $t_{p(\max)}$.
- Outputs may start changing after $t_{p(\min)}$ and stablize no later than $t_{p(\text { min })}$.

Critical Paths and Short Paths

How slow can this be?

Critical Paths and Short Paths

How slow can this be?
The critical path has the longest possible delay.

$$
t_{p(\max)}=t_{p(\max , \mathrm{AND})}+t_{p(\max , \mathrm{OR})}+t_{p(\max , \mathrm{AND})}
$$

Critical Paths and Short Paths

How fast can this be?
The shortest path has the least possible delay.

$$
t_{p(\min)}=t_{p(\min , \mathrm{AND})}
$$

Glitches

A glitch is when a single change in input values can cause multiple output changes.

Glitches may occur when there are multiple paths of different length from input I to output O.

Glitches

A glitch is when a single change in input values can cause multiple output changes.

Glitches may occur when there are multiple paths of different length from input I to output O.

Glitches

A glitch is when a single change in input values can cause multiple output changes.

Glitches may occur when there are multiple paths of different length from input I to output O.

Glitches

A glitch is when a single change in input values can cause multiple output changes.

Glitches may occur when there are multiple paths of different length from input I to output O.

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

$$
C\left\{\begin{array}{ll|l|l|}
\hline 1 & 0 & 0 & 0 \\
\hline 1 & \overbrace{1}^{1} & 1 & 0 \\
\hline & \underbrace{}_{A}
\end{array}\right.
$$

Arithmetic Circuits

Arithmetic: Addition

Adding two one-bit numbers: A and B
Produces a two-bit result: C and S (carry and sum)

A	B		C	S
0	0		0	0
0	1		0	1
1	0		0	1
1	1		1	0

Half Adder

Full Adder

In general, due to a possible carry in, you need to add three bits:

$C_{i} A B$	$C_{0} S$
000	00
001	01
010	01
011	10
100	01
101	10
110	10
111	11

A Four-Bit Ripple-Carry Adder

A Two's Complement Adder/Subtractor

To subtract B from A, add A and $-B$.
Neat trick: carry in takes care of the +1 operation.

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

$+$	-2	-1	0	1
-2	10			
	10			
	+10			
	00			
-1	10	11		
	10	11		
	+11	+11		
	01	10		
0	00	00	00	
	10	11	00	
	+00	$+00$	+00	
	10	11	00	
1	00	11	00	01
	10	11	00	01
	$+01$	+01	+01	+01
	11	00	01	10

Overflow in Two's-Complement Representation

When is the result too positive or too negative?

+	-2	-1	0	1	
-2	$\begin{array}{r} 10 \\ 10 \\ +10 \\ \hline 00 x \end{array}$				The result does not fit when the top two carry bits differ.
-1	$\begin{array}{r} 10 \\ 10 \\ +11 \\ \hline 01 x \end{array}$	$\begin{array}{r} 11 \\ 11 \\ +11 \\ \hline 10 \end{array}$			$A_{n}^{A_{n}} \quad A_{A_{n}-1}^{A_{n}} \quad{ }^{B_{n-1}}$
0	$\begin{array}{r} 00 \\ 10 \\ +00 \\ \hline 10 \end{array}$	$\begin{array}{r} 00 \\ 11 \\ +00 \\ +011 \end{array}$	$\begin{array}{r} 00 \\ 00 \\ +00 \\ +00 \end{array}$		
1	$\begin{array}{r} 00 \\ 10 \\ +01 \\ \hline 11 \end{array}$	$\begin{array}{r} 11 \\ 11 \\ +01 \\ +00 \end{array}$	$\begin{gathered} 00 \\ 00 \\ +01 \\ +01 \end{gathered}$	$\begin{array}{r} 01 \\ 01 \\ +01 \\ \hline 10 x \end{array}$	

Ripple-Carry Adders are Slow

The depth of a circuit is the number of gates on a critical path.

This four-bit adder has a depth of 8.
n-bit
ripple-carry adders have a depth of $2 n$.

Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead adders reduce its depth using the following trick:

For bit i,

$$
\begin{aligned}
C_{i+1} & =A_{i} B_{i}+A_{i} C_{i}+B_{i} C_{i} \\
& =A_{i} B_{i}+C_{i}\left(A_{i}+B_{i}\right) \\
& =G_{i}+C_{i} P_{i}
\end{aligned}
$$

K-map for the carry-out function of a full adder

Generate $G_{i}=A_{i} B_{i}$ sets carry-out regardless of carry-in.

Propagate $P_{i}=A_{i}+B_{i}$ copies carry-in to carry-out.

Carry Lookahead Adder

Expand the carry functions into sum-of-products form:

$$
\begin{aligned}
C_{i+1} & =G_{i}+C_{i} P_{i} \\
C_{1} & =G_{0}+C_{0} P_{0} \\
C_{2} & =G_{1}+C_{1} P_{1} \\
& =G_{1}+\left(G_{0}+C_{0} P_{0}\right) P_{1} \\
& =G_{1}+G_{0} P_{1}+C_{0} P_{0} P_{1} \\
C_{3} & =G_{2}+C_{2} P_{2} \\
& =G_{2}+\left(G_{1}+G_{0} P_{1}+C_{0} P_{0} P_{1}\right) P_{2} \\
& =G_{2}+G_{1} P_{2}+G_{0} P_{1} P_{2}+C_{0} P_{0} P_{1} P_{2} \\
C_{4} & =G_{3}+C_{3} P_{3} \\
& =G_{3}+\left(G_{2}+G_{1} P_{2}+G_{0} P_{1} P_{2}+C_{0} P_{0} P_{1} P_{2}\right) P_{3} \\
& =G_{3}+G_{2} P_{3}+G_{1} P_{2} P_{3}+G_{0} P_{1} P_{2} P_{3}+C_{0} P_{0} P_{1} P_{2} P_{3}
\end{aligned}
$$

The 74283 Binary Carry-Lookahead Adder

 (From National Semiconductor)

Carry out i has $i+1$ product terms, largest of which has $i+1$ literals.

If wide gates don't slow down, delay is independent of number of bits.

More realistic: if limited to two-input gates, depth is $O\left(\log _{2} n\right)$.

