Fundamentals of Computer Systems Combinational Logic

Stephen A. Edwards

Columbia University

Summer 2015

Combinational circuits are stateless.

Their output is a function only of the current input.

Basic Combinational Circuits

Enabler

Encoders and Decoders

Multiplexers

Shifters

Circuit Timing

Critical and Shortest Paths Glitches

Arithmetic Circuits

Ripple Carry Adder Adder/Subtractor Carry Lookahead Adder

Enablers

Overview: Enabler

An enabler has two inputs:

- data: can be several bits, but 1 bit examples for now
- enable/disable: 1 bit on/off switch

When enabled, the circuit's output is its input data. When disabled, the output is 0.

Enabler Implementation

Note abbreviated truth table: input, A, listed in output column

In both cases, output is enabled when EN = 1, but they handle the disabled (EN = 0) cases differently.

Encoders and Decoders

Overview: Decoder

A decoder takes a k - bit input and produces 2^k single-bit outputs.

The input determines which output will be 1, all others 0. This representation is called *one-hot encoding*.

The smallest decoder: one bit input, two bit outputs

2:4 Decoder

Decoder outputs are simply minterms. Those values can be constructed as a flat schematic (manageable at small sizes) or hierarchically, as below.

3:8 Decoder

Applying *hierarchical design* again, the 2:4 DEC helps construct a 3:8 DEC.

Implementing a function with a decoder

Warning: Easy, but not a minimal circuit.

Encoders and Decoders

BCD				One-Hot						
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Priority Encoder

An encoder designed to accept any input bit pattern.

<i>I</i> 3	<i>I</i> ₂	<i>I</i> ₁	<i>I</i> ₀	V	<i>O</i> ₁	<i>O</i> ₀
0	0	0	0	0	Х	Х
0	0	0	1	1	0	0
0	0	1	Х	1	0	1
0	1	Х	Х	1	1	0
1	Х	Х	Х	1	1	1

$$V = I_3 + I_2 + I_1 + I_0$$

$$O_1 = I_3 + \overline{I_3}I_2$$

$$O_0 = I_3 + \overline{I_3}\overline{I_2}I_1$$

Multiplexers

Overview: Multiplexer (or Mux)

A mux has a k - bit selector input and 2^k data inputs (multi or single bit).

It outputs a single data output, which has the value of one of the data inputs, according to the selector.

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

S	<i>I</i> ₁	I ₀	0
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of this size.

Muxing Wider Values (Overview)

Muxing Wider Values (Components)

Think of a function as using k input bits to choose from 2^k outputs.

E.g., $F = BC + A\overline{C}$

Think of a function as using k input bits to choose from 2^k outputs.

E.g., $F = BC + A\overline{C}$

Can we use a smaller MUX?

Instead of feeding just 0 or 1 into the mux, as in Version 1, one can remove a bit from the select, and feed it into the data ports along with the constant.

Overview: Shifters

A shifter shifts the inputs bits to the left or to the right.

There are various types of shifters.

- Barrel: Selector bits indicate (in binary) how far to the left to shift the input.
- L/R with enable: Two control bits (upper enables, lower indicates direction).

In either case, bits may "roll out" or "wraparound"

Example: Barrel Shifter with Wraparound

Circuit Timing

Computation Always Takes Time

There is a delay between inputs and outputs, due to:

- · Limited currents charging capacitance
- \cdot The speed of light

The Simplest Timing Model

- Each gate has its own propagation delay t_p.
- When an input changes, any changing outputs do so after t_p.
- Wire delay is zero.

A More Realistic Timing Model

It is difficult to manufacture two gates with the same delay; better to treat delay as a range.

- Each gate has a minimum and maximum propagation delay t_{p(min)} and t_{p(max)}.
- Outputs may start changing after t_{p(min)} and stablize no later than t_{p(min)}.

Critical Paths and Short Paths

How slow can this be?

Critical Paths and Short Paths

How slow can this be?

The critical path has the longest possible delay.

$$t_{p(\max)} = t_{p(\max, AND)} + t_{p(\max, OR)} + t_{p(\max, AND)}$$

Critical Paths and Short Paths

How fast can this be?

The shortest path has the least possible delay.

$$t_{\rho(\min)} = t_{\rho(\min, AND)}$$

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

A glitch is when a single change in input values can cause multiple output changes.

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a cost of a few extra gates).

Arithmetic Circuits

Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Full Adder

In general, due to a possible carry in, you need to add *three bits*:

C _i A B	C _o S
000	00
001	01
010	01
011	10
100	01
101	10
110	10
111	11

A Four-Bit Ripple-Carry Adder

A Two's Complement Adder/Subtractor

To subtract *B* from *A*, add *A* and -B. Neat trick: carry in takes care of the +1 operation.

Overflow in Two's-Complement Representation

Wł	nen is t	he result	t too p	ositive o	r too	negative?
+	-2	-1	0	1		-
-2	10 10 +10 00					
-1	10 10 +11 01	11 11 +11 10				
0	00 10 +00 10	00 11 +00 11	00 00 +00 00			
1	00 10 +01 11	11 11 +01 00	00 00 +01 01	01 01 +01 10		

Overflow in Two's-Complement Representation

Ripple-Carry Adders are Slow

The *depth* of a circuit is the number of gates on a critical path.

This four-bit adder has a depth of 8.

n-bit ripple-carry adders have a depth of 2*n*.

Carry Generate and Propagate

The carry chain is the slow part of an adder; carry-lookahead adders reduce its depth using the following trick:

$$\begin{aligned} \widehat{C}_{i+1} &= A_i B_i + A_i C_i + B_i C_i \\ &= A_i B_i + C_i (A_i + B_i) \\ &= G_i + C_i P_i \end{aligned}$$

K-map for the carry-out function of a full adder

Generate $G_i = A_i B_i$ sets carry-out regardless of carry-in.

Propagate $P_i = A_i + B_i$ copies carry-in to carry-out.

Carry Lookahead Adder

Expand the carry functions into sum-of-products form:

$$C_{i+1} = G_i + C_i P_i$$

$$C_{1} = G_{0} + C_{0}P_{0}$$

$$C_{2} = G_{1} + C_{1}P_{1}$$

$$= G_{1} + (G_{0} + C_{0}P_{0})P_{1}$$

$$= G_{1} + G_{0}P_{1} + C_{0}P_{0}P_{1}$$

$$C_{3} = G_{2} + C_{2}P_{2}$$

$$= G_{2} + (G_{1} + G_{0}P_{1} + C_{0}P_{0}P_{1})P_{2}$$

$$= G_{2} + G_{1}P_{2} + G_{0}P_{1}P_{2} + C_{0}P_{0}P_{1}P_{2}$$

$$C_{4} = G_{3} + C_{3}P_{3}$$

$$= G_{3} + (G_{2} + G_{1}P_{2} + G_{0}P_{1}P_{2} + C_{0}P_{0}P_{1}P_{2})P_{3}$$

$$= G_{3} + G_{2}P_{3} + G_{1}P_{2}P_{3} + G_{0}P_{1}P_{2}P_{3} + C_{0}P_{0}P_{1}P_{2}P_{3}$$

The 74283 Binary Carry-Lookahead Adder (From National Semiconductor)

Carry out *i* has i + 1product terms, largest of which has i + 1literals.

If wide gates don't slow down, delay is independent of number of bits.

More realistic: if limited to two-input gates, depth is $O(\log_2 n)$.