
YAGL: Yet Another Graphing Language

Edgar Aroutiounian, Jeff Barg, Robert Cohen

July 14, 2014

1 Description of YAGL

YAGL is a new programming language for constructing graphics, with the intent of allowing pro-

grammers to construct graphics with various different output formats.

The language features a static type system with a void type that can conditionally downcast to the

other primitives (Int, Array, etc..). Types are indicated by the type name declarator followed by

the variable name. All types are objects. Each object holds an enumeration for what its type is,

along with the underlying data. There is no string type. There are integer and array literals.

There are limited control structures: an iterated for loop, an if statement and break. A for loop

can iterate on Stream and Array types and will yield a void type as the iterated item which needs

to be downcast.

2 What Does YAGL Solve?

YAGL allows users to take JSON formatted data and produce clear and concise graphs. The

properties of these graphs (such as color) can be manipulated utilizing algorithms. The output of

the YAGL program can be determined by the user (SVG, ASCII, or PDF). YAGL is essentially and

clean and minimal language for producing graphs quickly and easily.

1

3 Examples of YAGL Syntax

YAGL will have a void type, which cannot be operated upon. The void type can be conditionally

downcast using the syntax:

i f l e t b = a as Int {

scope o f b i s only in t h i s f unc t i on

}

This allows us to safely operate on JSON streams.

YAGL does not have a string type. In order to pipe in filenames to open JSON files, the open open

keyword takes in $[n] which specifies the nth command line parameter. open constructs a Stream.

Stream s = open $0

YAGL has an iterated for loop and array literals:

Stream s = open $0

YAGL has an iterated for loop and array literals:

f o r a in [[4 , 1 , 5] , 3 , 5 , [2 , 3]] {

i f (l e t i n t a = a as Int) {

}

e l i f (l e t i n t a = a as Array) { }

}

2

KEYWORDS OPERATORS TYPES

if ++ Void

elif + Array

for - Canvas

in * Int

break / Stream

let

in

func

Table 1: YAGL PRIMITIVES

4 Example YAGL Program

func makeGraph(Array : param1)

{

Canvas myGraph = new Canvas ()

0 i s a s c i i a r t graph , 1 i s SVG meant f o r a browser , 2 i s PDF?

myGraph . graphType = 0

Opens up command l i n e argument , presumably JSON.

Stream s = open $0

f o r (item in s)

{ # Say there are only 3 enums o f types

0 i s in t ege r , 1 i s array , 2 i s canvas Object

i f (l e t i n t e g e r i t e m = item as Int)

{

myGraph . addRectAllParams (item)

}

e l i f (l e t a r ray i t em = item as Array)

{

myGraph . addRect (item [0] , item [1] , item [2] , item [3])

3

}

}

}

Notice Last item i s a nested Array

myData = [3 , 4 , 5 , 1 , [3 , 1 , 5 , 6]]

bu i ld makeGraph(myData)

Standard Library − preview graph with prede f i n ed parameters ,

s p i t s out a s c i i a r t graph to standard output preview (data)

4

