
Parallel Programming in OpenMP and Java

Stephen A. Edwards

Columbia University

Summer 2014

Parallel Computer Architectures

Intel Quad Core Duo

Four identical x86 processor cores

Separate L1 caches, shared L2
cache and main memory

IBM Cell Broadband Engine

One general-purpose PPE w/ 32K
L1 caches and 512K L2 cache

Eight vector SPEs, each with
individual 256K memories

Processes and Threads

Process

Separate address space

Explicit inter-process
communication

Synchronization part of
communication

Operating system calls: fork(),
wait()

Thread

Shared address spaces

Separate PC and stacks

Communication is through
shared memory

Synchronization done explicitly

Library calls, e.g., pthreads

Part I

OpenMP

Dot Product

#include <stdio.h>

int main()
{
double a[256], b[256], sum;
int i, n = 256;

for (i = 0 ; i < n ; i++) {
a[i] = i * 0.5;
b[i] = i * 2.0;

}

sum = 0.0;

for (i = 0 ; i < n ; i++)
sum += a[i]*b[i];

printf("sum = %f\n", sum);
return 0;

}

Dot Product

#include <omp.h>
#include <stdio.h>

int main()
{
double a[256], b[256], sum;
int i, n = 256;

for (i = 0 ; i < n ; i++) {
a[i] = i * 0.5;
b[i] = i * 2.0;

}

sum = 0.0;
pragma omp parallel for reduction(+:sum)
for (i = 0 ; i < n ; i++)
sum += a[i]*b[i];

printf("sum = %f\n", sum);
return 0;

}

OpenMP version

gcc -fopenmp -o dot dot.c

OpenMP pragma tells the
compiler to

Ï Execute the loop’s
iterations in parallel
(multiple threads)

Ï Sum each thread’s
results

What’s going on?
#include <omp.h>
#include <stdio.h>

int main() {
int i, n = 16;

pragma omp parallel for \
shared(n) private(i)

for (i = 0 ; i < n ; i++)
printf("%d: %d\n",
omp_get_thread_num(), i);

return 0;
}

“parallel for”: Split for loop
iterations into multiple threads
“shared(n)”: Share variable n
across threads
“private(i)”: Each thread has a
separate i variable

Run 1

1: 4
1: 5
1: 6
1: 7
2: 8
2: 9
2: 10
2: 11
0: 0
3: 12
3: 13
3: 14
3: 15
0: 1
0: 2
0: 3

Run 2

3: 12
3: 13
3: 14
3: 15
1: 4
1: 5
1: 6
1: 7
2: 8
2: 9
2: 10
2: 11
0: 0
0: 1
0: 2
0: 3

Run 3

0: 0
0: 1
0: 2
0: 3
3: 12
3: 13
3: 14
3: 15
1: 4
1: 5
1: 6
1: 7
2: 8
2: 9
2: 10
2: 11

Fork-Join Task Model
Spawn tasks in parallel, run each to completion, collect the results.

Master Thread

Fork

Join

Child threads

Parallel Regions

#include <omp.h>
#include <stdio.h>

int main()
{

pragma omp parallel
{ /* Fork threads */

printf("This is thread %d\n",
omp_get_thread_num());

} /* Join */

printf("Done.\n");

return 0;
}

$./parallel
This is thread 1
This is thread 3
This is thread 2
This is thread 0
Done.
$./parallel
This is thread 2
This is thread 1
This is thread 3
This is thread 0
Done.
$ OMP_NUM_THREADS=8 ./parallel
This is thread 0
This is thread 4
This is thread 1
This is thread 5
This is thread 3
This is thread 6
This is thread 2
This is thread 7
Done.

Work Sharing: For Construct

#include <omp.h>
#include <stdio.h>

int main()
{
int i;

pragma omp parallel
{

pragma omp for
for (i = 0 ; i < 8 ; i++)
printf("A %d[%d]\n",

omp_get_thread_num(), i);
pragma omp for

for (i = 0 ; i < 8 ; i++)
printf("B %d[%d]\n",

omp_get_thread_num(), i);
}

return 0;
}

$./for
A 3[6]
A 3[7]
A 0[0]
A 0[1]
A 2[4]
A 2[5]
A 1[2]
A 1[3]
B 1[2]
B 1[3]
B 0[0]
B 0[1]
B 3[6]
B 3[7]
B 2[4]
B 2[5]

Work Sharing: Nested Loops

Outer loop’s index private by default.
Inner loop’s index must be set private.

#include <omp.h>
#include <stdio.h>

int main()
{
int i, j;

pragma omp parallel for private(j)
for (i = 0 ; i < 4 ; i++)
for (j = 0 ; j < 2 ; j++)

printf("A %d[%d,%d]\n",
omp_get_thread_num(), i, j);

return 0;
}

p$./for-nested
A 3[3,0]
A 3[3,1]
A 1[1,0]
A 1[1,1]
A 2[2,0]
A 2[2,1]
A 0[0,0]
A 0[0,1]

$./for-nested
A 3[3,0]
A 3[3,1]
A 1[1,0]
A 1[1,1]
A 0[0,0]
A 0[0,1]
A 2[2,0]
A 2[2,1]

Summing a Vector: Critical regions
#pragma omp parallel for
for (i = 0 ; i < N ; i++)

sum += a[i]; // RACE: sum is shared

int main()
{
double sum = 0.0, local, a[10];
int i;
for (i = 0 ; i < 10 ; i++)
a[i] = i * 3.5;

pragma omp parallel \
shared(a, sum) private(local)

{
local = 0.0;

pragma omp for
for (i = 0 ; i < 10 ; i++)
local += a[i];

pragma omp critical
{ sum += local; }

}
printf("%g\n", sum);
return 0;

}

Without the critical directive:
$./sum
157.5
$./sum
73.5

With #pragma omp critical:
$./sum
157.5
$./sum
157.5

Summing a Vector: Reduction

#include <omp.h>
#include <stdio.h>

int main()
{
double sum = 0.0, a[10];
int i;
for (i = 0 ; i < 10 ; i++)

a[i] = i * 3.5;

pragma omp parallel \
shared(a) reduction(+:sum)

{
pragma omp for

for (i = 0 ; i < 10 ; i++)
sum += a[i];

}

printf("%g\n", sum);
return 0;

}

$./sum-reduction
157.5

Barriers
#include <omp.h>
#include <stdio.h>

int main()
{
int x = 2;

pragma omp parallel shared(x)
{

int tid = omp_get_thread_num();
if (tid == 0)
x = 5;

else
printf("A: th %d: x=%d\n",

tid, x);

pragma omp barrier

printf("B: th %d: x=%d\n",
tid, x);

}
return 0;

}

$./barrier
A: th 2: x=2

Old value of x

A: th 3: x=2
A: th 1: x=2
B: th 1: x=5
B: th 0: x=5
B: th 2: x=5
B: th 3: x=5

$./barrier
A: th 2: x=2
A: th 3: x=5

New value of x

A: th 1: x=2
B: th 1: x=5
B: th 2: x=5
B: th 3: x=5
B: th 0: x=5

Summary of OpenMP

Shared memory model

Explicit private and shared directives

Fork/Join Concurrency

Good support for splitting up simple loops over arrays.

Critical regions

Barriers

Reduction operators

Part II

Java’s Support for Concurrency

Thread Basics

How to create a thread:

class MyThread extends Thread {
public void run() { // A thread’s "main" method
/* thread body */

}
}

MyThread mt = new MyThread; /* Create thread */
mt.start(); /* Start thread at run() */
// Returns immediately}

Threads are multiple contexts/program counters running within
the same memory space

All objects shared among threads by default

Any thread can access any object/method: no notion of ownership

implements Runnable vs. extends Thread

An alternative:

class MyRunnable implements Runnable {
public void run() {
/* thread body */

}
}

Thread t = new Thread(new MyRunnable());
t.start(); /* Starts thread at run() */
// Returns immediately}

Advantage: class implementing Runnable can be derived from
some other class (i.e., not just from Thread).

Disadvantage: “this” is not a Thread so, e.g., sleep() must be called
with Thread.currentThread().sleep().

The Sleep Method

class Sleeper extends Thread {
public void run() {
for (;;) {
try {

sleep(1000); // Pause for at least a second

} catch (InterruptedException e) {
return; // caused by thread.interrupt()

}

System.out.println("tick");
}

}
}

Does this print “tick” once a second?

A Clock?
class PrintingClock implements Runnable {
public void run() {
for (;;) {

java.util.Date now = new java.util.Date();
System.out.println(now.toString());

try {

Thread.currentThread().sleep(1000);

} catch (InterruptedException e) {}
}

}
}

public class Clock {
public static void main(String args[]) {

Thread t = new Thread(new PrintingClock());
t.start();

}
}

What does the clock print?

$ java Clock
Sat Sep 14 13:04:27 EDT 2002
Sat Sep 14 13:04:29 EDT 2002
Sat Sep 14 13:04:30 EDT 2002
Sat Sep 14 13:04:31 EDT 2002

What happened to 13:04:28?

Motivation for Synchronization

Something you might want to implement:

class ScoreKeeper {

int _score = 0;

void score(int v) {
int tmp = _score;
tmp += v;
_score = tmp;

}
}

What could the final score be if two threads simultaneously call
score(1) and score(2)?

Non-atomic Operations

Java guarantees 32-bit reads and writes
to be atomic

64-bit operations may not be

Therefore,

int i;
double d;

Thread 1 Thread 2
i = 10; i = 20;
d = 10.0; d = 20.0;

Per-Object Locks

Each Java object has a lock that may be
owned by at least one thread

A thread waits if it attempts to obtain an
already-obtained lock

The lock is a counter: one thread may lock an object more than
once

The Synchronized Statement

A synchronized statement waits for an obtains an object’s lock
before running its body

Counter mycount = new Counter;

synchronized(mycount) {
mycount.count();

}

Releases the lock when the body terminates.

Choice of object to lock is by convention.

Synchronized Methods

class AtomicCounter {

private int _count;

public synchronized void count() {
_count++;

}
}

synchronized attribute equivalent to enclosing body with
synchronized (this) statement.

Most common way to achieve object-level atomic operations.

Implementation guarantees at most one thread can run a
synchronized method on a particular object at once

Deadlock

synchronized(Foo) {
synchronized(Bar) {

// Asking for trouble
}

}

synchronized(Bar) {
synchronized(Foo) {
// Asking for trouble

}
}

Rule: always acquire locks in the same order.

Synchronization

Say you want a thread to wait for a condition
before proceeding.

An infinite loop may deadlock the system
(e.g., if it’s using cooperative multitasking).

while (!condition) {}

Calling yield avoids deadlock, but is inefficient:

while (!condition) yield();

Java’s Solution: wait() and notify()

wait() like yield(), but requires other thread to reawaken it

while (!condition) wait();

Thread that changes the condition calls notify() to resume the
thread.

Programmer responsible for ensuring each wait() has a matching
notify().

Wait() and Notify() in Real Life

I often have books delivered to the CS department office.

This operation consists of the following steps:

1. Place the order

2. Retrieve the book from the CS department office

3. Place book on bookshelf

Obviously, there’s a delay between steps 1 and 2.

The Implementation in the CS Office

This “order, retrive, file” thread is running in me, and it needs to
wait for the book to arrive.

I could check the department office every minute, hour, day, etc. to
see if the book has come in, but this would be waste of time (but
possibly good exercise).

Better approach would be to have the “receiving” process alert me
when the book actually arrives.

This is what happens: Alice in the front office sends me email
saying I have a book.

A Flawed Implementation
class Mailbox {}
public class BookOrder {
static Mailbox m = new Mailbox();

public static void main(String args[]) {
System.out.println("Ordering book");
Thread t = new Delivery(m);
t.start();
synchronized (m) {
try { m.wait();
} catch (InterruptedException e) {}

}
System.out.println("Book Arrived");

}
}
class Delivery extends Thread {
Mailbox m;
Delivery(Mailbox mm) { m = mm; }
public void run() {

try { sleep(1000); // one-second delivery
} catch (InterruptedException e) {}
synchronized (m) {
m.notify();

}
}

}

A Flawed Implementation

What happens if the book is delivered before the main thread starts
waiting?

Answer: the “notify” instruction does not wake up any threads.
Later, the main thread starts to wait and will never be awakened.

As if Alice came to my office to tell me when I was not there.

Harder Problem

Sometimes I have a number of books on order, but Alice only tells
me a book has arrived. How do I handle waiting for a number of
books?

Last solution assumed a single source of notify(); not true in
general.

Two rules:

1. Use notifyAll() when more than one thread may be waiting

2. Wait in a while if you could be notified early, e.g.,

while (!condition)
wait();

The multi-book problem

class Mailbox {
int book;
Mailbox() { book = -1; }
void receive_book(int b) { book = b; }
int which_book() { return book; }

}

This is not thread-safe: we’ll need to synchronize all access to it.

The multi-book problem

The Delivery class also tells the mailbox which book it got.

class Delivery extends Thread {
Mailbox m;
int book;
Delivery(Mailbox mm, int b) {

m = mm; book = b;
}
public void run() {

try { sleep(1000); }
catch (InterruptedException e) {}
synchronized (m) {
m.receive_book(book);
m.notifyAll();

}
}

}

The multi-book problem

class BookOrder extends Thread {
int book;
Mailbox m;
BookOrder(Mailbox mm, int b) { m = mm; book = b; }
public void run() {
System.out.println("Ordering book " +

Integer.toString(book));
Thread t = new Delivery(m, book);
t.start();
synchronized (m) {
while (m.which_book() != book) {

try { m.wait(); }
catch (InterruptedException e) {}

}
}
System.out.println("Book " +
Integer.toString(book) + " Arrived");

}
}

The multi-book problem

Finally, the main routine kicks off two ordering threads.

public class MultiOrder {
static Mailbox m = new Mailbox();
public static void main(String args[]) {
BookOrder t1 = new BookOrder(m, 1);
BookOrder t2 = new BookOrder(m, 2);
t1.start();
t2.start();

}
}

$ java MultiOrder
Ordering book 1
Ordering book 2
Book 1 Arrived
Book 2 Arrived

A Better Solution

Last solution relied on threads to synchronize their own access to
the Mailbox. Mailbox should be doing this itself:

class Mailbox {
int book;
Mailbox() { book = -1; }

synchronized void deliver(int b) {
book = b;
notifyAll();

}

synchronized void wait_for_book(int b) {
while (book != b) {

try { wait(); }
catch (InterruptedException e) {}

}
}

}

A Better Solution

class Delivery extends Thread {
Mailbox m;
int book;

Delivery(Mailbox mm, int b) {
m = mm; book = b;

}

public void run() {
try { sleep(1000); }
catch (InterruptedException e) {}
m.deliver(book);

}
}

A Better Solution

class BookOrder extends Thread {
int book;
Mailbox m;

BookOrder(Mailbox mm, int b) {
m = mm; book = b;

}

public void run() {
System.out.println("Ordering book " +
Integer.toString(book));

Thread t = new Delivery(m, book);
t.start();
m.wait_for_book(book);
System.out.println("Book " +
Integer.toString(book) + " Arrived");

}
}

A Better Solution

public class MultiOrder2 {
static Mailbox m = new Mailbox();
public static void main(String args[]) {

BookOrder t1 = new BookOrder(m, 1);
BookOrder t2 = new BookOrder(m, 2);
t1.start();
t2.start();

}
}

$ java MultiOrder2
Ordering book 1
Ordering book 2
Book 1 Arrived
Book 2 Arrived

Building a Blocking Buffer

Problem: Build a single-place buffer for Objects that will block on
write if the buffer is not empty and on read if the buffer is not full.

interface OnePlace {
public void write(Object o);
public Object read();

}

Blocking Buffer: Write Method

class MyOnePlace implements OnePlaceBuf {
Object o;

public synchronized // ensure atomic updates
void write(Object oo) {

try {
while (o != null)

wait(); // Block while buffer is full
} catch (InterruptedException e) {}

o = oo; // Fill the buffer
notifyAll(); // Awaken any waiting processes

}
}

Blocking Buffer: Read Method

class MyOnePlace implements OnePlaceBuf {
Object o;

public synchronized // ensure atomic updates
Object read() {

try {
while (o == null)

wait(); // Block while buffer is empty
} catch (InterruptedException e) {}

Object oo = o; // Get the object
o = null; // Empty the buffer
notifyAll(); // Awaken any waiting processes
return oo;

}
}

Blocking Buffer: Reader and Writer

class Writer extends Thread {
OnePlaceBuf b;
Writer(OnePlaceBuf bb) { b = bb; }
public void run() {

for (int i = 0 ; ; i++) {
b.write(new Integer(i)); // Will block

}
}

}
class Reader extends Thread {
OnePlaceBuf b;
Reader(OnePlaceBuf bb) { b = bb; }
public void run() {

for (;;) {
Object o = b.read(); // Will block
System.out.println(o.toString());

}
}

}

Blocking Buffer: Main Routine

public class OnePlace {
static MyOnePlace b = new MyOnePlace();
public static void main(String args[]) {
Reader r = new Reader(b);
Writer w = new Writer(b);
r.start();
w.start();

}
}

Summary of Java’s Concurrency Support

Ï Thread-based shared memory model
Fundamentally nondeterminstic; correctness the resposibility
of the programmer

Ï Per-object locks can ensure atomic access
Choice of locks by convention, although there is often a
natural choice. Danger of deadlock.

Ï Wait/notify mechanism for synchronizing threads
Undisciplined use can lead to races and deadlocks, but
following a pattern avoids most problems.

	OpenMP
	Java's Support for Concurrency

