
	

HOLLABACH

Language Reference Manual

COMS W4115: Programming Languages and Translators
Craig Darmetko (cd2698)

July 2, 2014

	

1.	 Introduction	

HOLLABACH is a language for composing MIDI based music. With
HOLLABACH, composers can create compositions similar to writing
programming code and utilize common programming tools and resources with
their compositions. The language also includes support for loops and conditional
logic for the often repetitive or algorithmic nature of musical compositions.
HOLLABACH is designed to help composers create music efficiently, compose
music collaboratively and abstract away the semantics of the MIDI specification.

2.	 Lexical	 Conventions	

2.1	 Comments	
	
A comment is preceded by ‘/*’ and ended with '*/‘. These comments may span
several lines but cannot be embedded in another comment.

2.2	 Identifiers	
	
Identifiers are a sequence of letters, digits, underscores and the ‘#’ symbol.
Identifiers cannot begin with a ‘#’ symbol or a digit and cannot be a reserved
keyword.

2.2.1	 Reserved	 Keywords	
	
The group of keywords that exist for defining language related function
functionality are:

loop, if, else, bpm, m, measureLen, comp, null

These keywords cannot be used for identifiers.

2.3	 Whitespace	
	
A whitespace character is used to separate tokens and is otherwise ignored.
Whitespace characters include the space, tab and newline characters.

	

3.	 Basic	 types/constants:	

3.1	 Integers:	
	
Integer Constants are a sequence of digits separated by whitespace. Some uses
for integers include representing conditional if statements, beats per minute
declarations, measureLen declarations and loop iteration counts.

3.2	 Note	
	
A Note is a single contiguous musical sound. An example note is:

A#3/4

This defines a note of pitch A# in octave 3 with a length of a quarter note (1/4).
The backslash denotes the beginning of the declaration of note length. Length is
determined by the denominator of the fraction of a measure it lasts, such as 4 for
quarter note, 2 for half note, 3 for triplets. Valid lengths include:

1 - whole note
2 - half note
3 - triplet
4 - quarter note
8 - eighth note
16 - sixteenth note.

The available pitches include A-G and an additional # or b character to represent
sharp or flat notes. The octave section can contain a single digit between 1 and
4. The overall lexical pattern for identifying a note is

[‘A’-‘G’][‘#’|’b’]?[‘1’-‘4’][’/’][‘1’|’2’|’3’|’4’|’8’|’16’]

3.3	 null	
	
A null keyword is used in a measure to depict a beat in a measure that is a
complete musical rest.

4.	 Complex	 types	 and	 Expressions	

4.1	 Chord	
	
A chord is a group of notes that will be played simultaneously. An example chord:

	

C2/4+G3/4+A3/4+C3/4

This defines a chord of four notes that lasts for a quarter beat. Notes in the chord
may end at different time, the goal is that all of the notes in a chord start at the
same time. A ‘+’ character separates notes and designates they are part of the
same chord. A ‘+’ may only precede a note if another note is following. For
example:

C2/4+G3/4+ is not valid and
C2/4++G3/4 is not valid.

4.2	 Measure	
	
A Measure is a musical unit in a composition. It contains an array of notes,chords
and nulls. Nulls represent a complete musical rest where nothing is playing. The
position in the array indicates when the note or chord is played based on the
length of the array. The array can be up to 32 units in length and it subdivides the
measure into as many note start positions as there are array entries. For
example,

m[A2/8, A2/8, A2/8, A2/8]

will play an eighth note every quarter beat for the measure. The array is declared
using ‘m’(short for measure) and the entries are surrounded by ‘[‘ and ‘]’ and split
using ‘,’. There may not be a trailing ‘,’ character before the ending ‘]’ or a leading
‘,’ character.

4.2.1	 Declaring	 a	 Measure	

Measures may also optionally be declared with an identifier for reuse in later
lines in a composition. For example:

 m aEveryFour [A2/8, A2/8, A2/8, A2/8]

It can then be used in later lines with simply:

m aEveryFour

If a measure identifier is redefined the compiler will override the current definition
with the new definition, but all previous uses of it will remain unchanged.

4.3	 Composition	
	
A composition combines measures into an overall structure and flow. It contains
a list of sequential measures and optional loop statements. Compositions must

	

have at least one measure or loop to be valid. Similar to the main method in Java
or C, only one Composition section is allowed per file. This is what is converted
to MIDI during compilation. Compositions are declared using the ‘comp’ tag.

comp{
 !BPM=140
 !measureLen=4
 m[G2/8, A2/8, B2/8, C2/8, D2/8, E2/8, F2/8, G3/8]
 loop 2 {
 m[G2/4+C2/4+G3/4,null,G2/4+C2/4+G3/4, null]
 }

}

The composition definition appears between the ‘{‘ and ‘}’ characters. Each
measure, if statement or for loop is separated by a newline character and
proceed sequentially. The beats-per-minute and measureLen are declared first
and second in the composition and these together dictates the length of a single
measure. The beats-per-minute and measureLen must always be declared and
must be declared at the beginning of the composition definition.

4.4	 Beats	 Per	 Minute	

The Beats per Minute (BPM) declaration occurs at the beginning of a
composition and determines the length of a musical beat in absolute time. BPM
is declared with the tag ‘!BPM=’ and defined with a positive integer that
follows. An example declaration is:
 !BPM=120

4.5	 measureLen	

MeasureLen is an attribute that determines how many beats occur in a measure.
Dividing this value by the BPM gives you the absolute time length of a single
measure. MeasureLen is declared with the tag ‘!measureLen=’ and defined with
a positive integer that follows. An example declaration is:
 !measureLen=4

4.6	 Loops	
	
A loop statement allows a measure or set of measures to be repeated a given
amount of times. A loop is declared with the keyword ‘loop’ and followed by an
integer representing the number of repetitions. Following the integer, the loop
contents are declared with a leading ‘{‘ and a trailing ‘}’. For example:

	

loop 2 {
 m[G2/4+C2/4+G3/4,null,G2/4+C2/4+G3/4, null]
}

A loop contents can include any combination of measures, if statements or
embedded loops.

4.7	 Conditional	 Statements	

A composer can use conditional statements to change the behavior of certain
loop iterations in a loop. The composer declares the conditional using an if
statement, followed by the loop iteration number that the if statement should
trigger. The iteration starts at 0 and increments until it is equal to the specified
number. This means an if statement meant to trigger on the first iteration should
use 0 as it’s conditional. A composer can also trigger on the negation of a
conditional by appending a ‘!’ character to the front. This allows composers to
define a sequence that is repeated on each loop except the given loop. The
composer can also use an else statement after an if to trigger on the negation
case of the if statement. The if body is declared after the conditional between
brackets. The body can contain measures or additional loops.

5.	 Variable	 Scope	

5.1	 Identifier	
	
The	 scope	 of	 a	 measure	 identifier	 in	 HOLLABACH	 is	 global	 to	 the	 composition	 once	
it	 is	 defined.	 Any	 references	 before	 it	 is	 defined	 in	 the	 composition	 will	 cause	
compiler	 errors.	 	

5.2	 Loop	
	
A loop has an implicit variable, the loop iteration number. The scope of this
variable is inside the loop (between the brackets) and is exclusively used in if
statements. An if statement conditional always refers to the lowest loop. For
example, if we have loop B embedded in loop A and an if statement in loop B,
the conditional will refer to the iteration number of loop B.

6.	 Compilation	 and	 Output	

To compile the program, HOLLABACH converts the Composition element to a
series of notes by evaluating loops and conditionals. These notes are then

	

translated into an intermediate CSV language and written out to a temporary file.
From here, the CSV is read by the third party Java tool CSV2MIDI[1] to convert
the data to a MIDI file. A sample CSV can be found at [2].

[1]- https://midilc.googlecode.com/svn/trunk/CSV2MIDI/CSV2MIDI.java
[2]- https://midilc.googlecode.com/svn/trunk/CSV2MIDI/ExampleMIDI.csv

7.	 Example	

comp{
 !BPM=140
 !measureLen=4

 m[G2/8, A2/8, B2/8, C2/8, D2/8, E2/8, F2/8, G3/8]
 loop 2 {
 m GChord [G2/4+C2/4+G3/4,null,G2/4+C2/4+G3/4, null]
 m GChord
 m GChord
 if 1{
 /* plays on last loop */
 m[G2/4+C2/4+G3/4,null, null, null,G2/4+C2/4+G3/4, null, null, A3/8]
 }
 else{
 /* plays on all others */
 m GChord
 }
 }
 /* last note*/
 m [G2/1]
}

