
SEAL Project Proposal

COMS W4115 Spring 2014

Ten-Seng Guh tg2458

Contents
1. Introduction .. 2

2. Syntax .. 2

2.1. Functions ... 2

2.2. Objects .. 2

2.3. Labels .. 3

2.4. Types ... 4

2.5. Arrays and Enumerations .. 5

2.6. Interrupts .. 6

2.7. Threads.. 6

3. Sample Program .. 7

Table 1: Object Labels ... 4

Table 2: Types ... 5

Table 3: Thread Labels .. 7

Table 4: Sample Data collecting program for auto-throttle computer ... 8

1. Introduction

Simple Embedded Avionics Language (SEAL) is a programming language that simplifies the

programming tasks most commonly found in embedded systems development, particularly

in the avionics industry. Avionics often perform continuous calculations and logging of

various data points relevant to space-craft/aircraft performance, and always send out

diagnostic and/or telemetric data to the ground. To support the implementation of this,

tasks such as accessing a variable by its address, swapping the bytes of a variable in order to

support both Big as well as Little Endian architectures, and creating deterministic, thread-

safe and reentrant code are all made much easier with SEAL. Not only will the lines of code

decrease compared to its C, Ada, and C++ counterparts, the reduced source code will also

lead to less headaches, more sleep, and more project throughput. Various architectures

will be supported, but for the purposes of this proposal we shall target the ARMv7-A

architecture using the Android NDK compiler. It is common in many embedded systems and

will find its way into the avionics industry shortly.

SEAL is strongly and statically typed, case-sensitive, procedural, and can be object oriented.

2. Syntax

2.1. Functions

SEAL, being a procedural language, supports functions. A function can return something or

nothing; the return type is inferred from the return statement or the lack thereof.

Recursive functions are allowed. The Main function is where the application code begins

execution, but set-up of registers, interrupt service routines, locks, etc. can be done before

Main runs. Below are a recursive function that returns the factorial of an inputted integer,

and a void function that prints out an inputted integer:

Factorial(Int n)

{

 if (n == 1) return 1;

 else return n * Factorial(n - 1);

}

PrintValues(Int n)

{

 Print(“n is equal to “ + n);

}

2.2. Objects

All variables are objects. All objects are tied to an address. A variable name in SEAL is really

more like a user-defined moniker for an address/range of addresses.

In other languages, it can be eternally confusing as to whether you are accessing a variable

by its value, or by its reference. SEAL makes it clear: you are ALWAYS accessing a variable

by its reference. Thus:

AddTwo(Int a){ a += 2;}

…

Int a = 3;

AddTwo(a);

Print(a); //this will print 5

The address of the variable is always made available to you by the Address label. If you

need to get its address, you’d simply do so by checking x.Address (more on labels in the

following section).

2.3. Labels

An object has labels. Labels are similar to properties in languages such as Java and C# but

may not have allocated any additional memory themselves (i.e. they are not separate

objects themselves). Hence the term “label”; it’s another aspect through which to view the

object with. All objects have the following labels:

Label Name Return Type Purpose

Address Int Gets or sets the address of
the object.

Swap Object Gets the swapped contents
of the object. Good for
sending/receiving contents
from a system with an
endianness that is opposite
of yours.

BigEndian Object Gets the big endian
representation of the
object. If you are already on
a Big Endian system, this
representation will be
identical to object.

LittleEndian Object Gets the little endian
representation of the
object. If you are already on
a Little Endian system, this
representation will be
identical to object.

Lock Object Gets or sets the lock that
the object is using. Can be

null.

String String Gets the string
representation of object. If
object is already a String,
this representation will be
identical to object.

Length Int Gets the length of the
object.

Table 1: Object Labels

Some labels are actually static and global functions, such as Swap. The implementation for

Swap will reside in code space as a statically defined global function. Whenever Swap is

called for an object, it will pass the object reference, along with object length, into the

global Swap function and return swapped contents to the stack. Lock is the only label which

is an object itself, albeit a global, static object.

2.4. Types

There are eight types in SEAL, known as the eight fundamental types. In C terms, a type can

be thought of as a class, struct, or union. It is a specification for a way to represent data in

SEAL. The following are the eight fundamental types. Size is in bytes and is specific to the

ARMv7-A architecture.

Type Return Type Description

Object 1 The base type which all
types are derived from,
including the six other
fundamental types.

Byte 1 Represents one byte of
data, 8-bits unsigned.

Bool 1 Represents a Boolean, can
be either true or false.

UShort/Short 2 Represents an
unsigned/signed 16-bit
integer.

Uint/Int 4 Represents an
unsigned/signed 32-bit
integer.

Ulong/Long 8 Represents an
unsigned/signed 64-bit
integer.

Float 4 Represents a 32-bit floating

point number, unsigned by
default.

Double 8 Represents a 64-bit floating
point number, unsigned by
default.

Table 2: Types

All types in SEAL are descendants of the Object type. New types can be created by the user,

limited only by their imagination. They will automatically derive from the Object type.

New functions can also be defined for new types. Here is an example of creating and using

a new type called Bus1Type:

Type Bus1Type

{

 Float baroAlt;

 Float pressureAlt;

 Int AOA;

 Byte goAround;

 Byte lastFault;

 CalculateAOA();

 CalculateAOAError();

 Recalibrate(Int pitch);

}

2.5. Arrays and Enumerations

Arrays are supported in SEAL and are objects themselves. They are fixed size, mutable and

have O(1) random access. In addition to the standard Object labels, they have the following

powerful labels:

Type Return Type Description

Apply Object Iterates through the array to apply the
given function to each element in the
array.

Sort Object Sorts array.

Reverse Object Sorts array in reverse order.

Search Int Searches for object, gets the index for
first occurrence, otherwise gets -1.

The following are examples of using arrays:

Int a[7] = {10, 2, 5, 3, 5, 8, 0};

a.Apply(Print); //will print "10253580"

a.Sort().Apply(Print); //will print "02355810"

printWithSpace(Int n)

{

 print(n + “ “);

}

a.Sort().Apply(printWithSpace); //will print "0 2 3 5 5 8 10"

a.Search(4); //returns -1

a.Search(2); //returns 2

Enumerations are essentially just byte arrays with useful monikers attached to each byte.

The following is an example:

Enum Seasons = {Spring, Summer, Fall, Winter};

Print(Seasons.Length()); //will print “4”

Seasons a = Fall;

2.6. Interrupts

In embedded applications development, it is not uncommon to handle interrupts yourself.

With this in mind, SEAL makes it incredibly easy to write your own interrupt service routines.

The keyword Interrupt before the usual function declaration is all you need to delineate

to the SEAL compiler that this function will be used to handle interrupts. Interrupt functions

cannot return anything. Hooking the ISR into the interrupt vector table is a painless affair.

Below is an example of hooking the ISR SoundOff, which makes a beep sound every 4

seconds, into address 0x3E, which is one of the timer interrupts.

Int counter = 0;

Bool makeSound = FALSE;

makeSound.Address = 0x4A; //speaker byte

Interrupt SoundOff

{

 counter++;

 if (counter == 4000)

 {

 counter = 0;

 makeSound = TRUE;

 }

}

SoundOff.Address = 0x3F; //hooking ISR to timer interrupt at 0x3F

2.7. Threads

Applications running on embedded systems will also often have multiple threads of

execution. This brings to light another limitation of C is that it lacks a built-in library for

threads. SEAL comes with a very simple and powerful threading capability, activated by the

keyword Thread. Anything enclosed in a thread block will execute in its own stack and

address space. Shared variables among threads will be protected via the lock label that

comes inherent with all types. Threads have the following labels:

Type Return Type Description

Priority Byte The priority in which this
thread should run.

Go None Kicks off thread execution.

Join None Waits for other thread(s) to
finish before kicking off
execution.

Pause None Halts thread execution.
Releases any locks held by
the thread.

Unpause None Resumes thread execution.
Attempts to reacquire any
locks that were held by the
thread.

Stop None Terminates thread
execution.

Table 3: Thread Labels

3. Sample Program

SEAL is meant for writing application level software of an embedded system, specifically for

avionics. It can also suffice for writing a simple operating system for an embedded system

due to its ability to handle interrupts and schedule threads. Avionics will almost always

have diagnostic or telemetric data streaming out a serial port to a PC or some other

external system. Oftentimes the endianness of the PC will not match that of the avionics, or

there may even be different endianness used between the various components of the

avionics themselves. In these cases, SEAL’s swap label is of most relevant use.

Below is a sample program that reads various data points from an auto-throttle computer

and spits them out to an external data logger. The processor that the auto-throttle uses is

Big Endian; the data logger is Little Endian, so byte swapping is performed on the data

points.

Include "SerialPort.ss"

Lock lock;

SerialPort sp;

sp.Lock = lock; //this serial port shall be shared between two threads, so lock it

sp.Configure("COM1", 115200, 1, 0, 0);

Float vm1, vm2, vtl1, vtl2; //voltage of motor 1, motor 2, throttle lever 1, throttle lever 2

Int cm1, cm2, ctl1, ctl2; //current of motor 1, motor 2, throttle lever 1, throttle lever 2

Float tr1, tr2; //throttle rate of lever 1, lever 2

Int sk; //current airspeed in knots

Float sm; //current airspeed in Mach

vm1.Address = 0x400;

vm2.Address = 0x410;

vtl1.Address = 0x420;

vtl2.Address = 0x430;

cm1.Address = 0x404;

cm2.Address = 0x414;

ctl1.Address = 0x424;

ctl2.Address = 0x434;

tr1.Address = 0x800;

tr2.Address = 0x810;

sk.Address = 0x1100;

sm.Address = 0x1104;

Get_Voltages_And_Currents()

{

 String voltages, currents, totalOutput;

 voltages = "Voltages: \nMotor 1 = " + vm1 + "\n Motor 2 = " + vm2 + "\ Throttle Level 1 =

" + vtl1 + "\ Throttle Level 2 = " + vtl2 + "\n";

 currents = "Currents: \nMotor 1 = " + cm1 + "\n Motor 2 = " + cm2 + "\ Throttle Level 1 =

" + ctl1 + "\ Throttle Level 2 = " + ctl2 + "\n";

 totalOutput = voltages + "\n\n\n" + currents;

 return totalOutput;

}

Get_Throttle_Rate()

{

 String totalOutput;

 totalOutput = "Throttle Rate 1 = " + tr1 + "\nThrottle Rate 2 = " + tr2 + "/nAirspeed (in

knots) = " + sk + "/n Airspeed (in Mach) = " + sm;

 return totalOutput;

}

Thread Thread1()

{

 String output;

 while (TRUE)

 {

 Sleep(1000);

 output = Get_Voltages_And_Currents().Swap();

 sp.Write(output);

 }

}

Thread Thread2()

{

 String output;

 while (TRUE)

 {

 Sleep(400);

 output = Get_Throttle_Rate().Swap();

 sp.Write(output);

 }

}

Main()

{

 Thread1.Priority = 1;

 Thread1.Go();

 Thread2.Priority = 2;

 Thread2.Go();

}

Table 4: Sample Data collecting program for auto-throttle computer

