
PDDLyte Language Reference Manual

John Martin Jr.
jdm2213@columbia.edu

March 14, 2014

i

Contents

Introduction iii

Lexical Conventions iv
Tokens . iv
Symbolic Expressions . iv
Atoms . iv
Comments . iv
Whitespace . v

Symbols vi
Variables . vi
Keywords . vi
Separators . vi
Procedures . vi
Bindings . vi

S-expressions vii
Procedures Revisited . vii

Basic Procedures . vii
Planning Procedures . viii

Planning S-expressions . viii

Bibliography x

ii

Introduction

The Pddlyte language, whose name derives from the Planning Domain Definition
Language (Pddl)[1], is a symbolic, specification language used to formulate and solve
planning problems.

Let’s quickly move into an example to motivate further explanation. Now the simplest,
logically-coherent PDDLyte program only translates input to output.

(define (domain square)
(: predicates (at ?what ?where))
(: action squat
:parameters ()
:precondition ()
:effect ()

)
)

(define (problem simple)
(: domain square)
(: objects ant sq)
(:init (at ant sq))
(:goal (at ant sq))

)

From the program we can deduce there are two different definitions. One seems to describe
a space of sorts. And the other definition relates to a problem. In essence, this is all
a Pddlyte program is: two definitions. The domain definition describes a planning
environment. Whereas the problem definition describes a plan configuration. It turns out
that a domain and problem description, as we’ve formulated it, are all anyone needs to
formulate a general planning problem! Plans are formulated with an initial state, a goal
description, and a domain on which to plan over. Provided the problem can be solved,
the solution can be represented as a sequence of actions, providing a map that leads from
an initial state to a goal state(s).

Pddlyte can describe much more interesting problems than what has been shown. After
understanding the contents of this document, the reader should be able to recognize
the Pddlyte’s expressive power. Solving classical planning problems will then become
simple.

iii

Lexical Conventions

In the most basic form, programs are comprised of two symbolic expressions. One is a
domain definition; the other is a problem definition. Beyond symbolism, three atomic
datatypes, white space, and comments compose programs.

Tokens

There are three primary token classes: atoms, keywords, and separators.

Symbolic Expressions

Symbolic expressions are recursively-defined data types which can nest atoms and lists to
an arbitrary depth – succinctly referred to as s-expressions.

〈s-expression〉 |= 〈atom〉 | 〈list〉
〈atom〉 |= λ | 〈number〉 | 〈identifier〉
〈list〉 |= () | (〈s-expression〉·〈list〉)

Note: the empty list is a valid symbolic expression.

S-expressions are comprised of atoms, symbolically-expressed dotted pairs1, and lists.

Atoms

Atoms are empty, numeric, or symbolic.

〈atom〉 |= λ | 〈number〉 | 〈symbol〉
〈number〉 |= (0 . . . 9)+

〈symbol〉 |= (a . . . z | + | - | * | / | _ | < | > | ! | ? | :)+

Figure 1. decomposes symbolic expressions to show their connection to atoms and lists.

Comments

Comments begin with a semicolon (;) and terminate with the line it occupies. Furthermore,
they do not nest and may not be composed within other comments. Words beyond the
semi-colon, to the end of the line are invisible to evaluation.

〈comment〉 |= ;
1A dotted pair can be thought of as a construction of two units.

iv

Whitespace v

S-expression

Atom

List

Number

Symbol

Empty list

Dotted pair

Figure 1 Decomposition of symbolic expressions[2]

Whitespace

Whitespace consists of any sequence of blank, tab, or newline characters.

Symbols

Symbolic atoms are strings of alphanumeric characters used to label the various objects
in a planning problem. Symbol is a colloquialism for symbolic atom.

Variables

Variables label a symbol’s spot in memory. These are immutable unless prefixed with
question marks.

〈variable〉 |= ?〈symbol〉

Keywords

Any symbol prefixed with a colon is a keyword.

〈keyword〉 |= :〈symbol〉

Separators

Separators serve to distinguish different data types. Parentheses mark the boundaries of
lists. While spaces separate data within a list.

〈separator〉 |= (|) | ␣

Procedures

Symbols are used to label procedures and their parameters.

〈procedure〉 |= (〈symbol〉 〈list〉 〈list〉+)

Procedures are fully explained in the next section.

Bindings

Variable bindings are not supported outside plan specifications and procedures.

vi

S-expressions

Pddlyte derives enormous representational power from symbolic expressions. S-expressions
represent both procedures and data. This implies that, in principle, Pddlyte programs
can be used as data and even generated as output!

Procedures Revisited

Procedures consist of a name, parameter list, and body. Names are symbols. Parameters
are variables, bound and assigned upon procedure entry. The body of a procedure consists
of the forms that are evaluated when the procedure is used.
Processing is identical to Lisp:

• Bind parameters2

• Assign parameters upon entry to a procedure3

• Evaluate the body with the parameters and return the result4

• Discard the argument binding

All procedures are evaluated as symbolic expressions; so there’s no precedence nor
associativity to consider.

Basic Procedures

Several basic procedures are included with Pddlyte.

Conjunction — Logical conjunctions are formed with the and predicate:

〈conjunction〉 |= (and 〈list〉)

Disjunction — Logical disjunctions are formed with the or predicate:

〈disjunction〉 |= (or 〈list〉)

Negation — A logical conjunction is inverted with the not predicate:

〈negation〉 |= (not 〈list〉)

The function returns T if its argument is nil, otherwise nil.

2Binding is considered the process of reserving memory for a symbol.
3Assignment is considered the process of storing a value, for a specified binding, in memory.
4Evaluation, a nebulous term, here, is considered a cascading process of assignment value recovery.

vii

viii S-expressions

Planning Procedures

Other procedures are used to specify planning problems.

Procedure definition — planning procedures are created with the define predicate:

〈definition〉 |= (define (〈symbol〉 〈symbol〉) 〈list〉 〈list〉+)

This shares semantics with Lisp, but is restricted to support the only two planning
procedures of Pddlyte.

Domain — The domain procedure establishes variable bindings and transition operators
of the planning environment. Only a single domain procedure is permitted per file.

〈domain〉 |= (domain 〈symbol〉) 〈type〉 〈action〉 〈predicate〉

The expansion of this grammar is deferred to the next section.

Problems — The problem procedure establishes variable bindings that configure the
planning graph.

〈problem〉 |= (problem 〈symbol〉) 〈domain name〉 〈object〉 〈initial state〉 〈goal〉
〈domain name〉 |= (:domain 〈symbol〉)

The remaining grammar has been deferred to the next section.

Planning S-expressions

Types — Types are symbols that specify objects of the domain. This attribute is an
extension of PDDL, but will be inherently supported with PDDLyte.

〈type〉 |= (:types 〈symbol〉+)

Actions — Actions are conditions which define system transitions.

〈action〉 |= (:action 〈parameter〉 〈pre-condition〉 〈effect〉)
〈parameter〉 |= (:parameters 〈symbol〉+)

〈pre-condition〉 |= (:precondition 〈list〉+)
〈effect〉 |= (:effect 〈list〉+)

Pre-conditions are logical conjunctions that must be satisfied before transitions take place.
Effects are logical conjunctions which must be satisfied and valid before the transition is
completed. Actions with no pre-conditions are always valid. The parameters are those
used in the conditions.

Planning S-expressions ix

Predicates — Predicates define relationships between object variables. These can be
static relations that hold from state to state or fluent relations. Each predicate is defined
with a name symbol and one or more name-type pairs; where the object name is separated
from the type with a dash:

〈predicate〉 |= (:predicates 〈list〉+)

An example predicate has been shown for clarity.

(: predicates (pred ?<name > - <type >))

Objects — Objects describe types that exist in a problem, but that are absent from the
domain specification.

〈object〉 |= (:objects 〈list〉∗)

Note: This s-expression is optional.

Initial State — The initial state defines the conditions that are true in the system’s
starting configuration.

〈initial state〉 |= (:init 〈list〉+)

Goal Description — The goal description, analogous to the initial state, describes the
terminal conditions.

〈goal〉 |= (:goal 〈list〉+)

Bibliography

[1] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. Pddl — the planning domain definition
language. Technical report, AIPS Planning Competition Committee.

[2] Patrick Henry Winston and Berthhold Klaus Paul Horn. LISP. Addison Wesley.

x

	Introduction
	Lexical Conventions
	Tokens
	Symbolic Expressions
	Atoms
	Comments
	Whitespace

	Symbols
	Variables
	Keywords
	Separators
	Procedures
	Bindings

	S-expressions
	Procedures Revisited
	Basic Procedures
	Planning Procedures

	Planning S-expressions

	Bibliography

