BuckCal

A Matrix Manipulation Language for Calculating Expenses

Ahmad Maruf (aim2122): Manager
Meng Wang (mw2972): Language Guru
Prachi Shukla (ps2829): Systems Architect
Lan Yang (ly2331): Verification & Validation
Lingyuan He (lh2710): Systems Integrator

Programming Language & Translators (COMS W4115)
Instructor: Professor Stephen Edwards

Fall 2014
September 24, 2014

Proposal:
BuckCal is a matrix manipulation language. It has full support for mathematical matrix

operations and is optimized for spreadsheet calculations. With enhanced matrix operations
and data type support, we can make budget, record expenses, and add numbers with
different units without worrying about unit conversion. Programs written with BuckCal include
employee payroll calculator, statistical computation, and estimation of budget.

Motivation:

Calculating expenses is amongst the most common daily tasks. For example, keeping track of
our daily/weekly expenses or how much money we owe to others. BuckCal is designed to
record all the data in a matrix, calculate daily expenses on various commodities, and estimate
savings. It allocates the bills to members of matrix, so that every member gets a clear thought
of how much he/she owes to others.

Someone may suggest numeric computing softwares such as MATLAB and visual
spreadsheet processing application like Microsoft Excel. However, MATLAB is not convenient
enough for simple daily use and Microsoft Excel is not designed for straightforward
programming. To solve these problems, BuckCal combines the advantage of both MATLAB
and MS Excel by offering powerful computation and ease of use. Moreover, what
differentiates BuckCal from those above is that it deals with different units of currency and
goods. In short, our project aims to introduce a simple, comprehensible and easily
programmable language to analyze the money we spend.

Language Features:

1. Built-in types, with a few examples:

integer (123, -5)

double (1.23)

string (‘This’, ‘a’)

boolean (true/false)

matrix (composed of basic data types)

vector (Matrix with only one column or row)
2. Operators:

+ (Addition)

- (Subtraction)

> (greater than)

< (smaller than)

= (equal)

<> (unequal)

: (@assignment)

. (indicating the reverse of function name and argument)
3. Units (‘kg’, ‘Ib’, I, ‘qt’) are well-defined, combined, and auto converted in matrix for
computing (e.g. adds 1kg with 1 Ib equals to 1.4 kg)

4. Console/File Output (print matrix to console / a file)
5. Proper indentation (Consistency required)
6. Every statement ends in a semicolon (;)
7. No OOP support: no class, namespace
8. Function call by value
9. Naming conventions of variables: only letters, case-sensitive.
10. Strong static types: static type-checking
11. Matrix Operations:
- Sum up rows/columns
- Add/drop a row/column
- Rename rows and columns
- Access an element in a matrix by name or index
Keywords:
int (integer)
double
string
bool (boolean)
mat (instantiate a matrix)
def fed (function declaration)
for ... in ... orf (iteration)
if ... then ... else ... fi (branch)
disp (print to console)
export (print to file)

Programming Features:

1. Comments

This is a single-line comment. No multi-line comment support
This is not comment but # From here to end-of-line is comment

2. Declaration

int uninit; # declare an integer without initialization
inti: 2; # declare an Integer variable a and initialize as 2
double d: 2.50; # declare an floating-point number 2.50

string s: “this string”; # declare a string s and initialize it
bool a: true; # declare a boolean

mat m: [1, 2; 4, 5]; # declare a matrix: “;” starts a new row, “,” splits elements in

sSame row

3. Basic Expressions
inta:1+2; # yields 3
double b: 2.0 - 3; # yields -1.0
if b <0 then # if-else statement

disp a;
else
disp b;
fi # end of if

fori:in[1,2,3,4] # iteration with a for-loop

disp i;
rof # end of for
int foo_bar: int x # define a function “foo_bar”, with one int argument x, return a int
defx+5 # foo_bar x will returns x+5
’def also indicates the end of function
int c: foo_bar 3 # call function foo_bar, yield 8
int c: 3.foo_bar # equivalent to previous line

Library Support:

1. addrow, addcol :
add a row/column to an existing matrix

2. sumrow, sumcol:
sum up all the rows/columns and put the result as a new row/column in matrix

3. rowname, colname:
Access the name of all rows/cols in a matrix

Example Code: (black: source code; blue: output; green: comments)

Matrix must be explicitly declared
Create an empty matrix "budget"
mat budget ;
John bought 1lb food with $3.30
Add one row "John" to budget,
column "Food" = 2Ib, column "Price" = 3.3
addrow budget 'John' ['Food': 2Ib, 'Price": 3.3] ;
Similarly, one more
addrow budget 'Tom' ['Paper': 500, 'Price": 5.10] ;
disp budget ; # export budget budget.txt
budget:
Food Price Paper
John 2Ib 33 0
Tom O 510 500
John bought 1kg of food for 4%
addrow budget John [‘Food’: 1kg, ‘Price’: 4] ;

#display budget matrix

disp budget ;
budget:

Food Price Paper
John 2Ib 33 0
Tom O 510 500
John 1kg 4 0
sum up!

#sum_row : sums up the columns and add a new row with all the results
mat sbudget : sumrow budget ;

disp sbudget ;
sbudget:

Food Paper Price
John 2Ib 0 3.3
Tom O 500 5.10
John 1kg O 4
sum 1.9kg 500 12.40

note: "a.func" is equivalent to "func a"

No "class" or "name-space" support

define function ‘split_bill’ that takes an argument as matrix
mat split_bill : mat b

mat result ; # to store result
forr:in b.rows # scan every row
idx: locate r.name result.cols.names # whether name known
if idx = null then # new name ?
addcol result r.name ['Debit": r('Price")] # add a column
else # known name
accum result(idx) r('Price'); # accumulate the price
fi# end if
rof # end of for-loop
Here we got:
bill :
John Tom
Debit 7.30 5.10
sum up price of every one
mat result1: sumcol result ;
Here we got:
John Tom sum
Debit 7.30 5.10 12.40
add a row, filled with the same value
addrow result ‘SplitExp’ [result1(Debit, sum) / result.width] ;
Here we got

result

Debit
SplitExp

John Tom
7.30 5.10
6.20 6.20

mat result: diffrow result ;

result

Debit
SplitExp
diff

John Tom
7.30 5.10
6.20 6.20
110 -1.10

result(-1, :) rowname Budget ;

def result ;
call function

return result and end the function

the results are demonstrated above
mat bill : split_bill budget ;

disp bill;
bill

John
Debit 7.30

SplitExp 6.20
Budget 1.10

Tom
5.10
6.20
-1.10

