
ENGI E1102 Departmental Project Report:
Computer Science/Computer Engineering

Stephen A. Edwards

September, 2013

Abstract

This template attempts to illustrate both how to structure and write the
final report for ENGI E1112 as well as serve as a very basic tutorial for the
LATEX typesetting system.

An abstract like this should summarize a document in a way that just
about anybody can understand. It should be roughly 200 words of pure
text and not contain images, undefined terms, or bibliographic references.
Address why you did what you did, what you actually did, and, space per-
mitting, how you did it.

My goal is to show you a document that is representative of good style
in both English and LATEX.

1 Introduction
This section should orient the reader to the document. Unlike the abstract, which
should stand on its own, the introduction is an integrated part of the document and
may contain figures, references to later sections, and bibliographic references.

Most paragraphs in technical writing follow the “topic sentence style” I am us-
ing for this paragraph. The initial sentence summarizes the main point of the para-
graph; the remaining sentences provide additional details. Following this structure
should make it easy to skim the document by reading the first sentence of every
paragraph.

Be concise. This is the central point of Strunk and White [3], perhaps the best
English style guide ever. I think of technical writing as an engineering challenge:
how to clearly express ideas using as few words as possible. You will never be
paid (or graded) by the word in technical writing, so be conservative. Your readers
will thank you.

1

Figure 1: The HP 20b

2 User Guide
You built a system that people are intended to use; tell them how to use it in this
section. Explain your calculator’s display and keyboard, and how to use them
to perform computations. Don’t include any details about how you implemented
these things; those are for later sections.

Follow a tutorial style: use plenty of examples, start simply and end with more
complex examples. Feel free to look over another calculator’s instruction manual
for inspiration, but be sure to cite everything you use heavily.

3 The Platform
In this section, describe the hardware platform that you used to implement your
project—the HP 20b calculator. The first lab writeup describes some aspects of it;
more information can be found online.

I first learned about hacking the HP 20b (Figure 1) from de Brébisson’s article
in Circuit Cellar [1], and eventually took some more information from the HP 20b
repurposing project website [2].

3.1 The Processor

The HP 20b is little more than a keyboard and liquid crystal display (LCD) con-
nected to an Atmel AT91SAM7L128 processor. This mouthful of a name, which I

2

will abbreviate to SAM7L, was given to it because it is part of Atmel’s AT91SAM

series of chips, which are all built around an ARM processor core (“AT” is for At-
mel; “SAM” is “smart ARM core;” 91 appears to be arbitrary). The 7L series of
microcontrollers are designed for low power (hence the L), and the final 128 is a
reminder that it includes 128K of flash program memory.

Figure 2 shows a block diagram of the SAM7L chip. It looks complicated,
but is essentially a single standard processor surrounded by memory and a wide
variety of peripherals, most of which we will not use. You should be aware of the
system controller, which, through software, controls the clock and power supply
of each peripheral. This makes it possible to save energy by not powering on
unneeded peripherals, but can also make a peripheral appear not to work if you
neglect to turn on its power.

3.2 The LCD Display

Describe the layout of the LCD. The HP 20b SDK, which you can find on HP’s
website, includes a technical drawing of the LCD if you want to include it. Here
would be a good place to describe some of the library functions I provided for you
(e.g., lcd_put_char7).

3.3 The Keyboard

We tore apart some keyboards earlier in the term; here would be a good place to
describe what you found along with details of the HP 20b’s keyboard.

4 Software Architecture
In this section, explain how the various pieces of software in your system work
together. Describe what they do, but not how each piece works; leave that for the
next section.

5 Software Details
In this section, include cleaned-up listings of every bit of code you wrote for this
lab (only include the declarations for the library code I wrote) and explain how
they work, your motivations for them, whether you would do anything differently,
etc.

5.1 Lab 1: Display a Number

In this section, describe what you were asked to implement for this lab (display a
single integer) and how you implemented it.

Below, I describe my own code for a different problem (making a scrolling
display); use it as a starting point for describing your own solution.

3

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: A block diagram of the AT91SAM7L microcontroller that is at the heart
of the HP 20b

4

#include "AT91SAM7L128.h"
#include "lcd.h"

#define DELAY 50000
#define COLUMNS 12

int main()
{
char message[] = "CS AND CE ARE FUN ";
char *start, *cptr;
int col, i;

lcd_init();
// Turn off the watchdog timer

*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

for (;;) {
for (start = message ; *start != ’\0’ ; start++) {

cptr = start;
for (col = 0 ; col < COLUMNS ; col++) {
lcd_put_char7(*cptr++, col);
if (*cptr == ’\0’) cptr = message; // wrap around

}
for (i = 0 ; i < DELAY ; i++) {}

}
}
return 0;

}

Figure 3: My code for displaying a scrolling message

5

Figure 3 shows my code for a scrolling display. It consists of two loops in-
side an infinite loop. The innermost loop steps through each character of the dis-
play, fetching characters from the message string (the cptr pointer) and wrapping
around to the first character of the message. The wrap-around makes the message
restart after it ends, e.g., the display may read “ARE FUN CS AND.” When this
loop terminates, a do-nothing for inserts a delay before the display is redrawn to
make it scroll at a reasonable speed.

The middle loop steps the start pointer through each character of the message,
starting cptr at the beginning of the message, the second character, the third, etc.
When this loop terminates, the outer for loop restarts it.

5.2 Lab 2: Scanning the Keyboard

Describe how you wrote the software that scanned the keyboard. Mention how
you actually did the scanning, how you encoded the result, and how you tested it.

5.3 Lab 3: Entering and Displaying Numbers

Describe the structure of your software for entering numbers. Explain the inter-
face to your function (i.e., how it is called and how to interpret what it returns),
how you chose to represent intermediate results (e.g., did you keep an integer as
the value and convert it for display, or did you store the results as a string and only
convert it to an integer when you returned it?), and the various corner cases (e.g.,
what happens when someone presses +/− without having entered any digits).

5.4 Lab 4: An RPN Calculator

Explain how you used the pieces you described in Sections 5.2 and 5.3 to create a
real calculator. You should have explained how RPN works in Section 2; here you
should explain how you implemented your stack and how your software interprets
commands.

6 Lessons Learned
What did you learn from this lab? What advice do you have for future students?
What do you know now that you wish you were told at the beginning of the class?

Using LATEX
Get and install one of the many TEX distributions:

• under Windows, use MiKTEX;

• for Mac OS X, MacTEX may be the easiest; and

6

http://miktex.org
http://www.tug.org/mactex/2011/

• for Linux, TEX Live is the way to go. Under Ubuntu, sudo apt-get install
texlive-latex-base will install most of what you need.

Writing LATEX is a bit like writing a program. Once you’ve edited your re-
port.tex and report.bib files, which contain text and bibliographic data, run pdfla-
tex to generate a PDF file from them. Because of the way references are handled
(e.g., to the bibliography and figures), you may actually have to run four programs
(Figure 4). The Makefile I included with this report does this for you automati-
cally; make should rebuild if anything changes.

References
[1] Cyrille de Brébisson. How to repurpose a development platform. Circuit

Cellar, 232:44–49, November 2009.

[2] Hp-20b repurposing project. Online http://www.wiki4hp.com/doku.
php?id=20b:repurposing_project.

[3] William Strunk Jr. and E. B. White. The Elements of Style. Longman, fourth
edition, 1999.

7

http://www.tug.org/texlive/
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project

$ pdflatex report.tex
...
LaTeX Warning: There were undefined references.

LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.
...
Output written on report.pdf (7 pages, 296486 bytes).
Transcript written on report.log.
$ bibtex report.aux
...
Database file #1: report.bib
$ pdflatex report.tex
...
LaTeX Warning: There were undefined references.

LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.
...
Output written on report.pdf (7 pages, 296486 bytes).
Transcript written on report.log.
$ pdflatex report.tex
...
Output written on report.pdf (8 pages, 298715 bytes).
Transcript written on report.log.

Figure 4: Running LATEX. It is sometimes necessary to run pdflatex three times to
resolve all the references.

8

	Introduction
	User Guide
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: Display a Number
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned

