
Rhythm

John Sizemore (Team Leader)
Cristopher Stauffer

Yuankai Huo
Lauren Stephanian

Introduction

● Rhythm is a music composition language

● Programmers create chronological tracks out of notes,
rests, and chords

● Tracks can be played alone or with other tracks to
create more complex music

Motivation

● Most music composition programs rely on visual or
audio cues

● Furthermore, these programs often come with a
substantial learning curve and require extensive
knowledge about production and/or music theory

● Rhythm seeks to provide a simpler way to make music
without requiring production experience

● Perfect marriage of music and programming

Project Architecture
.ry

source
code

Scanner Parser
AST Interface

Datalib

Compiler Bytecode
.rym format

Assembler
rym2MIDI.java

Midi music

Program Structure

● Global Variable
Definition

● Initialization Function
Definition

● General Function
Definition

● Track Function
Definition

def s; /* Global Variable */

track_foo()
{
 c = [[A0.16,A1.16,A2.16],A3,A4.16,R.8,A2];
 return c; /* Local Variable */
}

track_foo2()
{
 return s;
}

init()
{
 s = [A5,B3,R.1,D7]; /* OK */
 c = c >> 2; /* Error! */
}

Program Output
Track: foo
1 0
1 12
1 24
2 36
3 36
4 36
5 36
6 48
9 24
10 24
11 24
12 24

Track: foo2
1 60
2 60
3 60
4 60
5 38
6 38
7 38
8 38

myprogram.ry

output.rym

midi

midi player

General Language Properties
● Imperative - Function Based Language

● Static Variable Scoping Rules

○ Global variables are defined at top of program with “def” keyword.
○ Local variables are defined as function parameters or as expressions

in the function body.
○ Variables must be defined before they are used

● Static Typing - Although variable typing is inferred instead of explicitly
defined. No “note” or “chord” keywords.

● No standard “write” procedure - compiling a track accomplished via return
statements from track functions. Better design for modularity and for
separating tracks.

Keywords
if

else

loop

while

true

false

return

Special Function Names
init()

track_*()

Variable and Function Definition

● Variables can be global or local
○ Globals defined using the ‘def’ keyword (e.g. def x)
○ Locals defined by simple assignment: (e.g. c = A4)
○ Definition and assignment must be a separate operation for global

variables

● Function definition is of the form:

function_name(param_1,...,param_n)

{

def x;

… statements...

return z;

 }

Primitive Types

● Ids, Integers

● Notes

● Rests

● Array
○ Tracks e.g. [C5,[A1,A2,A3],G#6.8]
○ Chords e.g. [A1,A2,A3]

C#5.8

Base Note

#/ b (Optional)

Octave

Duration (Optional)

R.16 Duration (Optional)

Expressions and Statements

● Unary Expressions
○ Notes, Rests, Literals

● Assignment
○ note = C#5

● Array access
○ myArray[5]

● Binary Operation
○ x OP y

● Statements
○ end in semicolon

Operators
● Modification Operators

○ ‘+’ ‘‐’ ‘++’ ‘--’ ‘*’ ‘/’ ‘<<’ ‘>>’

● Combinational Operators
○ expression -> expression
○ expression :: expression

● Equality Operators
○ expression == expression
○ expression != expression

● Assignment Operators
○ lvalue = expression
○ lvalue += expression
○ lvalue ‐= expression
○ lvalue *= expression
○ lvalue /= expression
○ lvalue >>= expression
○ lvalue <<= expression
○ lvalue ::= expression

Operators II
● +

■ Arithmetic: 1 + 1 = 2
■ Pitch changes: C4 + 1 = C#4
■ Mixing: [A4, B4] + [C4, D4] = [[A4, C4], [B4, D4]]

● -
■ Minus: Same principles apply with arithmetic and pitch changes
■ Cannot “de-mix”. Mixing operation constructive only

● ++/--
■ Shorthand for increasing/decreasing value/pitch: C4++ = C#4

● >>/<<
■ Octave Shifting: C4 >> 1 = C5

● *
■ Increase note duration: C4.4 * 2 = C4.2
■ Seems counterintuitive, but notes can be represented as either

whole, half, quarter, eighth, sixteenth notes
■ C4.4 is a quarter note : C4.4 * 2 changes it to a half note (C4.

2)

● /
■ Decrease note duration

Operators III
● ::

■ Concatenation: [A4, B4] :: C4 => [A4, B4, C4]
■ Useful for sequentially ordering tracks

● ->
■ Stretch: R4.1 -> 2 => [R4.1, R4.1]
■ Useful for padding or making loops

● ==
■ Equality Check
■ A4 == B4 = false
■ [A4, B4, C4] == [A4, B4, C4] = true

● !=, >, >=, <, <=
■ Inequality Check
■ A4 != B4 = true A4 < B4 = true
■ [A4, B4, C4] != [A4, B4, C4] = false

● =
■ Assignment: c = [A4, B4, C4];

● +=, -=, *=, /=, ::=, >>=, <<=
■ Performs operation and assigns result to the lvalue on the left
■ c ::= D4 = [A4, B4, C4, D4]

Rym File Format
Track: foo
0 0
0 12
0 24
1 36
2 36
3 36
4 36
5 48
8 24
9 24
10 24
11 24

Track: foo2
0 60
1 60
2 60
3 60
4 38
5 38
6 38
7 38

myprogram.ry

output.rym

Pitch
A4.16

Tick

Chord
[A0.16,A1.16,A2.16]

Track
Name [[A0.16,A1.16,A2.16],A3,A4.16,R.8,A2]

A3

A2

[A5,B3]

Generate Midi

output.rym output.midi

Track 1
0 0
0 12
0 24
1 36
2 36
3 36
4 36
5 48
8 24
9 24
10 24
11 24
12 24
13 24
14 24

Track 2
0 60
1 60
2 60
3 60
4 38
5 38
6 38
7 38

step2: Generate Onset Duration
pitch onset duration
0 0 1
12 0 1
24 0 1

8 7
36 1 4
48 5 1

step3: Send Message To Track
track[1].addmessage(0, 0, 1)
track[1].addmessage(12, 0, 1)
track[1].addmessage(24, 0, 1)
track[1].addmessage(36, 1, 3)
track[1].addmessage(36, 4, 1)
track[1].addmessage(48, 5, 1)
track[1].addmessage(24, 8, 4)
track[1].addmessage(24, 12, 3)

note 1

note 2

note 3

step1: Generate Tick Table
pitch ticks
0 [0]
12 [0]
24 [0, 8, 9, 10, 11, 12, 13, 14]
36 [1, 2, 3, 4]
48 [5]

Complete Program

Row Row Row
Your Boat

getBaseNotes() {
 def row;
 def rowbase;
 rowbase = [[C5,E5,G5], [C5,E5,G5], [C5,
E5,G5],D5.8, E5.8, E5.8, D5.8, E5.8, F5.8,
G5.2, C6, G5, E5, C5, G5.8, F5.8, E5.8, D5.
8, [C5,E5,G5]];

 row = rowbase->3;
 return row;
}

track_1() {
 return getBaseNotes();
}

track_2() {
 return R.1->4 :: getBaseNotes() << 2;
}

track_3() {
 return R.1->2 :: getBaseNotes() << 1;
}

Complete Program
track_1() {
 c = [[C5.1,C6.1,C4.1,C3.1,C2.1]]; /* C octaves */
 e = c + 4; /* E octaves */
 g = c + 7; /* G octaves */
 count = 0;
 song = [];
 while (count < 12) {

song = song :: (c+e+g) :: R.1->2 :: (c+1 +
e+1 + g+1) :: R.1->16;

 c++; e++; g++; count++;
 }
 return song->3;
 }

Complete Program

Shepard Tones

● Audio Illusion
● Repeated sequence of

notes that sound like
they are always rising
in pitch

● Works better with
certain sounds than
others

● Simple waveforms (e.g.
sinusoid) work best

track_1() {
 c = [[C5.1,C6.1,C4.1,C3.1,C2.1]]; /* C octaves */
 e = c + 4; /* E octaves */
 g = c + 7; /* G octaves */
 count = 0;
 song = [];
 while (count < 12) {

song = song :: (c+e+g) :: R.1->2 :: (c+1 +
e+1 + g+1) :: R.1->16;

 c++; e++; g++; count++;
 }
 return song->3;
 }

Complete Program

An example of a pop music
1. popular
2. released in 2012

Can you recognize this music?

More important
Rhythm supports multi-tracks !

Complete Program
multitracks example

track_1(){
one1 = [G#3.1,G#3.1,G#3.1,G#3.1,G#3.2,G#4.1,G#4.2,R.1,R.1,R.1,G#4.1,G#4.1,G#4.1];
one2 = [G#4.1,G#4.2,G#3.1,G#3.2,G#4.1,G#4.2,R.1,R.2,G#4.1,G#4.1,G#4.1,B5.1,B5.1,B5.
1];
one3 = [G#3.1,G#3.1,G#3.1,G#3.1,G#3.2,G#4.1,G#4.2,R.1,R.1,R.1,G#4.1,G#4.1,G#4,R.2,
R];
…

onesong = one1::one2::one3 …
return onesone}

track_2(){
two1 =[G#2.1,G#2.1,G#2.1,R.1,R.1,R.1,G#2.1,G#2.1,G#2.1,R.1,R.1,R.1];
two2 =[G#2.1,G#2.1,G#2.1,R.1,R.1,R.1,G#2.1,G#2.1,G#2.1,R.1,R.1,R.1]
two3 = [G#2.1,G#2.1,G#2.1,R.1,R.1,R.1,G#2.1,G#2.1,G#2.1,R.1,R.1,R.1];
…

twosong = two1::two2::two3 …
return onesone}

track_3(){
…}

track_4(){
…}

Conclusions
● Language Learnings

○ Initially difficult to think of language as anything other
than a configuration

○ .rym data can be easily changed: fairly
straightforward

● Project Learnings
○ An early start is extremely beneficial
○ Weekly meetings and maintaining communication

are very important
○ Modular division of tasks critical
○ Now, we not only know how to drive
a car (use c,java ...) but also know how
to build one!

