
Interactive Fiction Language – Final Report

Gema Almoguera, UNI GA2347

COMS W115 – Summer 2013

Contents
1. Introduction .. 3

1.1 Description of the language .. 3

1.2 How it should be used ... 3

1.3 Code examples ... 4

2. Language Tutorial .. 6

2.1 For the programmer ... 6

2.2 For the player .. 9

3. Language Reference Manual ... 10

3.1 Introduction ... 10

3.2 Lexical conventions ... 10

3.2.1 Comments... 10

3.2.2 Identifiers ... 10

3.2.3 Keywords .. 10

3.2.4 Constants .. 11

3.2.5 Operators .. 12

3.2.6 Punctuation ... 12

3.3 Syntax notation ... 12

3.4 Meaning of identifiers .. 12

3.4.1 Types .. 12

3.4.2 Variable and Function Scope .. 14

3.5 Expressions and operators .. 14

3.5.1 Precedence and associativity rules ... 14

3.5.2 Unary operators ... 15

3.5.3 Binary arithmetic operators ... 15

3.5.4 Relational operators .. 15

3.5.5 Logical operators ... 16

3.5.6 Assigment operator .. 16

3.6 Statements .. 16

3.6.1 Expression statements .. 16

3.6.2 Compound statements .. 17

3.6.3 Conditional statements ... 17

3.6.4 For Statement ... 17

3.6.5 While Statement .. 17

3.7 Built-in Functions .. 17

3.8 Program structure ... 18

4. Project Plan .. 19

4.1 Process ... 19

4.2 Style guide ... 19

4.3 Project timeline .. 19

4.4 Software Development Environment .. 20

4.5 Project log ... 20

5. Architectural design ... 20

5.1 Components of the translator ... 20

5.2 Interfaces between the components ... 21

6. Test plan .. 22

6.1 Representative programs ... 22

6.2. Test suites used ... 24

7. Lessons Learned ... 27

8. Appendix: Interactive Fiction Language Code... 28

Scanner (scanner.mll) ... 28

Parser (parser.mly) .. 29

IFL Abstract Syntax Tree and pretty printer (ast.ml) .. 31

C Abstract Syntax Tree and pretty printer (CAst.ml) ... 33

IFL AST to C AST (asttoast.ml) ... 39

Interpreter header file – types.h ... 40

Interpreter header file – headers.h.. 41

Interpreter (Interpreter.c) ... 41

1. Introduction

1.1 Description of the language

The proposed project is an interactive fiction language to program text-based adventure games.

This is a type of text game that mixes writing and programming. The writer creates the code so that the
player becomes the main character of the game. The player interacts with the elements of the game by
using a command line to type two-word actions. These actions can be movements (go north, go south,
etc.), interactions with the environment (take sword, play flute) or game commands (show inventory,
look around). The story progresses as the player performs the right actions, uses the right items, and
explores the correct rooms.

Throughout this document, the words “writer” and “programmer” are used indistinctively, since they
are synonymous in our context: they represent the creator, writer, and programmer of the game.

The purpose of this project is to write a reduced version of one of the most used programming
languages for interactive fiction, called TADS3 (Text Adventure Development System version 3), and so
the syntax and semantics used look close to the original language.

1.2 How it should be used

Once the writer has a story, he or she will create the rooms, items, and actions in the story, defining
how the game must behave depending on the commands typed by the user through a command line.

More concretely, the programmer will be able to create item and location objects. These objects can
have properties (similar to attributes in Java) and actions (similar to methods in Java). In fact, the
whole program is just a list of object declarations: a game declaration, one or more room declarations,
and one or more item declarations.

The programmer will use these methods to attach actions to each object and specify the resulting
behavior of such actions. For example, if there is an object in our game called ‘flute’, we can write a
method to explain how the story progresses if the player types ‘play flute’. Actions that are applied to
objects are composed of a verb in the imperative mood and a noun (the item name).

The writer can use if/else, while, and for clauses within the methods, as well as checking whether other
items are in the player’s inventory. The main types used are strings, integers, and booleans, which have
proven sufficient to write basic games.

Once the code is finished, the writer can compile the algorithm into C code. This C code can then be
compiled, along with the interpreter provided (also written in C code), to create the full game.

1.3 Code examples

The programmer will start by defining a game object. The game object must include the name of the
room where the player starts, as well as the introduction to the game:

 gameMain: GameMainDef
 {
 initialRoom =yourRoom;
 intro =

"Welcome to your new adventure! You are a new castle guard looking for the queen’s
lost ring. If you find it, the queen will allow you to become her personal chef – Your
childhood dream! Armed only with your sword and a lamp that’s running out of oil, you
find yourself at the entrance of a cave. It’s getting dark and you can hear the wolves
howling close. What are you going to do now?”;

 }
 }

This is an example of the definition of a room object, with an in-game name, description, and an exit as
properties. As seen below, comments are allowed and their syntax is similar to Java’s.

bedroom: Room
 {
 roomName = “bedroom”;

desc = "This is a luxury room that you found inside the cave, with a full bathroom
 and a nice view of the Caribbean.”;
 east = terrifyingCave; /* Where the player will go if they type ‘east’ from here. */
 }

Items follow a similar format, but can have methods that describe actions related to the item:

ring: Thing
 {
 name = “ring”;
 location = bedroom; /*This is where the ring will be found. */
 desc = "It's a small silver ring with a a black flower";

Fun wear ()
 {
 “You put on the silver ring and instantly feel like a king. ";

 }
 }

If the player meets certain conditions, the writer can finish the game by calling a function:

finishGameMessage (“Sorry! The giant squid ate the ring and the game is over.”);

This function will display the ending message, wait for the player to press a key, and finish the game.

Standard libraries

Even though the programmer is responsible for any programming that is relevant to his or her story,
the programming language already provides some basic movement and action commands ready for the
player:

- look around
- examine <name of item>
- show Inventory
- Basic direction movements (go north, south, east, west, northwest, northeast, southwest, or southeast
and their abbreviations).
- Error messages when the actions are not recognized

These commands are explained in detail in the language tutorial.

The game will keep track of other elements like the current location of the player and their inventory
contents.

2. Language Tutorial

2.1 For the programmer

a) Hello, world!

In order to get something displayed on the screen, the programmer only needs to write the

introduction of the game. Here is an example:

myGame : GameMain
{
 initialRoom = myRoom;
 intro = “Hello, world!”;
}

Even though this would print out “Hello world!” , the game will then wait for the player to type

commands. Since the previous program did not define how the game ends, it would never finish.

The story must have a beginning and end. An example of a complete program with the minimum

components would include defining a game, a room, an item, and an action performed on that item,

finishing the game. Here is an example:

myRoom : Room
{
 name = “My room”;
 desc = “This is my room. It’s locked, but it looks like somebody dropped a key.”;
}

key : Thing
{
 name = “key”;
 desc = “A small, golden key.”;
 location = myRoom;

 Fun use ()
 {
 finishGameMessage (“You open the door. It leads to a dungeon. Good job!”
 }

 }

myGame: GameMain
{
 initialRoom = myRoom;
 intro = “You wake up in your room. There’s a small key on the floor.”;
}

In order to finish this game, the player would have to type “take key” to pick up the key and put it in

their inventory. Once they have the key, they can type “use key”, which will finish the game.

b) More complex programs

As shown above, there are three types of objects. Each of them has some required fields:

- GameMain: Every game must have one object, and only one, of this type.

This type has the two following required fields:

o initialRoom: This object tells the game the starting location of the player. The Room

object that this field refers to must have been previously defined.

o intro: This is the introduction of the game and will be the first thing shown to the

player.

- Room: Every game must have at least one object of this type, that is, the room where the player

starts.

This type has two required fields:

o name: The name of the room.

o desc: The description of the room.

This type also has optional fields that represent exits from this room to different rooms. The

field name must be a compass direction, and the destination must be an existing room. The

programmer can define up to eight exits in a room, which must match one of the compass

directions. In order to take that exit, the player must type “go north”, “go south”, etc.

The format is as follows:

myRoom : Room
{
 name = “My room”;
 desc = “This is my room.”;
 north = bathroom;
 southeast = kitchen;
}

In this example, objects called bathroom and kitchen must have been declared before myRoom.

These exit fields are optional, so the writer must keep in mind that the player will not be able to

go anywhere if no exits are defined. However, they will still be able to interact with items and

use them.

- Thing: Every game must have at least one object of this type, that is, the item that triggers the

end of the game when the correct action is performed on it. Players can place items their

inventory to interact with them.

This type has the following required fields:

o name: The name of the item, which must match the object name.

o desc: The description of the item.

o location: Where the item can be found. Items are always first located in a room, not in

the player’s inventory.

Optionally, the writer can create an action for the item. Actions are expressed by writing a

function whose name is the name of the action. This name is usually a verb and will precede the

item it is attached to. For example, if we are defining a ‘play’ action for an item called ‘flute’, the

function should also be called ‘play’. That way, when the player types ‘play flute’, the related

function will be automatically executed.

The format is as follows:

Fun use ()
 {
 “You put on the ring and immediately feel like a king.”
 }

All function names must be unique throughout the program and written in lowercase letters.

The writer also has a tool at their disposal to see if a particular item is in the player’s inventory

and take action based on the result. Here is a short example, where a player must have the lamp

oil if they want to use the lamp:

oil : Thing

{

 name = “Oil”;

 desc = “Some lamp oil. This could come in handy!”;

 location = field;

}

lamp : Thing

{

 name = “lamp”;

 desc = “A simple but brand new lamp. Why don't you try using it?”;

 location = cave;

Fun use ()

 {

 if (IsinInventory (oil))

finishGameMessage (“The cave lights up and you can rest here for the night.

Good job!”)

 else

finishGameMessage (“You don't have any oil! It looks like you got lost in the

cave. Oh, no!”)

 }

}

The writer also has other common programming tools at their disposal, like for and while loops.

Please check the language reference manual (section 2 of this document) for more details.

The program starts at the object defined with type GameMainDef. It first displays the introduction

listed in that object and then sets the current location based on its InitialRoom attribute. Then, it

displays the initial room’s description and waits for the player’s input, taking action depending on

the player’s commands.

It is also possible to write comments by using a similar syntax to the C language: comments start

with /* and finish with */.

2.2 For the player

All commands are composed of two words, one verb and one noun. The player can type the

following general commands:

- look around, to see the description of the current room.

- show inventory, to see the current contents of their inventory.

- take <name_of_item>, to place that item in their inventory.

- examine <name_of_item>, to see the description of an item that is in the player’s inventory.

- go <compass_direction>, where <compass_direction> can be the full word (north, south,

etc.) or its abbreviation (n, s, etc.)

Also, the player might be able to type different commands depending on what items they have

and the current situation of the game. Usually, the writer will give them hints throughout the

game about what actions might be available.

If a player wants to leave the game before completing it, they can type ‘exit now’ to quit the

game. The progress of the game will be lost, so the player will have to start over if they decide

to quit the game early.

3. Language Reference Manual

3.1 Introduction

Interactive Fiction Language (IFL) is a programming language that allows writers to program text-

based adventure games. The writer will have the ability to control locations, an inventory, and a set of

vocabulary commands to present the story to the player. The player, in turn, will become the main

character of the game and will type commands in order to progress through the game and advance the

story.

The language tries to be as intuitive and simple as possible, yet still tries to give the programmer

enough freedom to write complex stories.

3.2 Lexical conventions

There are five different types of tokens in IFL:

- Identifiers

- Keywords

- Constants

- Operators

- Punctuation

White spaces are ignored, except for the fact that they separate tokens. Indentation is not meaningful in

IFL’s syntax.

Comments are also ignored; their syntax is defined below.

3.2.1 Comments

 The characters /* introduce a comment, and the text that follows them is ignored until */ is found.

Comments do not nest and cannot be used within string literals.

3.2.2 Identifiers

Identifiers are a sequence of letters, numbers, and the character “_”. Identifiers must start with a letter

and cannot contain white spaces. Uppercase and lowercase characters are considered different.

3.2.3 Keywords

The following identifiers are used as keywords and cannot be redefined by the programmer:

if

else

for

while

true

false

name

desc

room

location

thing

initialRoom

gameMainDef

isInInventory

finishGameMessage

Also, they following actions are reserved as built-in commands for the player and cannot be

given any other user by the programmer:

look around

examine <name of item>

show inventory

go east

go west

go north

go south

go southwest

go southeast

go northwest

go northeast

take <name of item>

3.2.4 Constants

There are different types of constants and literals, which also represent the different types

available in IFL:

a) Integer constants

Integer constants are a sequence of base-10 digits (0-9). Floating point numbers are not

supported, since they are not typically used in text-based adventure games.

b) String literals

A sequence of characters surrounded with double quotes is considered a string literal. A single

character is simply considered a one-character string.

c) Boolean literals

Boolean literals are represented by the keywords true and false.

3.2.5 Operators

The following operators are supported:

! + - * / =

== < <= >= != && ||

Their precedence and associativity rules, as well as their syntax, are defined in section 5 of this

manual.

3.2.6 Punctuation

-

- Statements within functions end with a semicolon.

- Blocks of statements and function bodies are enclosed in curly braces.

- Nesting of functions is not allowed.

3.3 Syntax notation
Throughout the manual, grammar productions and structures are noted in italic style and literal words,

symbols, and characters in typewriter style. Optional elements are enclosed in brackets.

3.4 Meaning of identifiers

3.4.1 Types

3.4.1.1 Basic types

As mentioned in section 2.4, IFL supports three basic types: integers, strings, and booleans.

Conversions between types are not allowed.

 3.4.1.2 Derived types

IFL supports objects specific to text-adventure games and functions that check for actions performed

on those objects. Their structure and syntax is explained below.

a) Objects

Programs in IFL are composed of object definitions. There are two main types of objects, rooms

(type Room) and items (type Thing), and a special type that sets the initial location and

description when the game starts (GameMainDef). A quick overview is shown below; please see

the language tutorial section for details about required and optional fields of each object type.

 GameMainDef: This object type is used to define the ´welcome´ message to the player and

to define the initial location. An object of this type must always be defined in the game, and

it must be placed after the initial room has been defined.

identifier: GameMainDef

{

 initialRoom = identifier;

 intro = “Introduction goes here.”;

 }

After the introduction is displayed, the player will be able to start typing commands.

 Thing: This object type defines items. Its attributes are the item name (as shown to the

player), the different words that the player can use to refer to the item separated by spaces,

the description (displayed when the player types “examine item-identifier”), and the

location where the item can be found.

identifier: Thing

 {

 name = “This is the item name as presented to the player.”

 desc = “This is the item description.”

 location = “This is the item description.”

 [function_definition]

 }

 Room: This object type is used to define each location of the game. Its attributes are the

room name (as presented to the player), its description, and the different exits.

identifier: Room

 {

 name = “This is the room name as presented to the player.”;

 desc = “This is the room description.” ;

 [exit_name = room-identifier];

 [action_definition]

}

Exit names must be one of the compass directions: north, south, east, west, northwest,

northeast, southeast, or southwest. The programmer must create a room in order to

create an exit to that room: that is, if the programmer wishes to have an exit from

room2 to room1, room1 must have been created before.

As shown above, exits are optional. The writer must keep in mind that the player will

be unable to move to other rooms if they arrive to a room with no exits.

Function (which in our context is synonymous to action) structure and syntax is

defined below.

b) Functions

Functions are used to check for actions performed on items. As shown above, these functions

must be placed after the attributes of an object with type Thing have been defined. Their

structure is as follows:

 fun Action ()
 { statements }

Statements must be separated by semicolons.

Functions are mostly used to check what type of action has been performed on a room or item.

An example of this is as follows:

fun drink (string action)

{

 “You drink the red potion and immediately feel refreshed.”;

}

 When the player types an action (for example, ‘play flute’), the program will check if that action

is listed in the Action function. If it is, the correspondent statements will be executed. If it is not

listed, the program will automatically show a message explaining that nothing happens when the

player performs the action typed.

3.4.2 Variable and Function Scope

Since all definitions take place within a function, all variables are considered local. Variables are not

accessible from outside the object they were defined and cannot be used before they are defined.

Variable names must be unique within the function that contains them, but there can be different

objects containing variables with the same name.

3.5 Expressions and operators

3.5.1 Precedence and associativity rules

All binary operators are left-associative, unless specified. The unary operator (assignment) is right-

associative.

From highest to lowest precedence, the supported operators are the following:

Operator Description

!

% *

+ -

== < <= > >= !=

&& ||

=

 Unary logical negation

 Multiplication and division

 Addition and subtraction

 Relational operators

 Logical operators

 Assignment

3.5.2 Unary operators

- ! boolean-expression

This unary operator evaluates the boolean expression and returns the opposite value (true if the

boolean expression is false, false if the boolean expression is true).

3.5.3 Binary arithmetic operators

- int-expression / int-expression

This operator returns the division of the two arguments, which must be integers.

- int-expression * int-expression

This operator returns the multiplication of the two arguments, which must be integers.

- int-expression - int-expression

This operator indicates subtraction. The two arguments must be integers.

- int-expression + int-expression

This operator indicates addition. The two arguments must be integers.

3.5.4 Relational operators

These operators evaluate the comparisons and return the result (true or false).

- expression == expression

This operator evaluates whether the two expressions are equal. The expressions can be integer, strings,

or Booleans.

- int-expression < int-expression

The < operator evaluates if the first expression is less than the second one. The arguments must be

integers.

- int-expression <= int-expression

The <= operator evaluates if the first expression is less or equal than the second one. The arguments

must be integers.

- int-expression > int-expression

The > operator evaluates if the first expression is greater than the second one. The arguments must be

integers.

- int-expression >= int-expression

The >= operator evaluates if the first expression is greater or equal than the second one. The arguments

must be integers.

- expression != expression

The != operator evaluates if the two expressions are different. The expressions can be integer, strings,

or booleans.

3.5.5 Logical operators

- boolean-expression && Boolean-expression

This operator evaluates if both boolean expressions are true.

- boolean-expression || Boolean-expression

This operator evaluates whether at least of the two expressions is true.

3.5.6 Assigment operator

- identifier = expression

This operator declares a variable with the same name as the identifier. Then, it evaluates the

expression and assigns its result and type to the variable.

3.6 Statements
Statements are present within function bodies.

3.6.1 Expression statements

Expressions can be created using the operators listed in section 5, or they can also be function calls

as explained in section 4.1.2.

3.6.2 Compound statements

Multiple statements are executed in the same order as they appear within a function. They must be

separated with a semicolon.

3.6.3 Conditional statements

Conditional statements take one of the two following forms:

If (boolean-expression) {statements} [else {statements}];

If the boolean expression evaluates to true, the first set of statements is executed. Otherwise (and if

the else statement is used), the second set of statements is executed.

3.6.4 For Statement

The for statement has the following syntax:

For (loop-identifier = initial-expression, loop-identifier = final-expression, step-expression)

 { statements }

In the first iteration of the loop, the initial expression is evaluated and its value is assigned to loop-

identifier. Then, its value is compared to final-expression. If they are equal, the loop will stop.

Otherwise, the statements enclosed in curly brackets will be executed. Then, step-expression will

be applied and the comparison will take place again. This process will continue until loop-identifier

reaches the final-expression value. As usual, the statements enclosed in curly brackets must finish

with a semicolon.

3.6.5 While Statement

The while statement has the following syntax:

While (boolean-expression)

 { statements }

This statement will evaluate boolean-expression. If it is true, the statements in curly brackets will

be executed. This process will be repeated as long as the boolean expression is true. Once the

Boolean-expression is false, execution will continue with the statement following the ending

bracket. As usual, the statements enclosed in curly brackets must finish with a semicolon.

3.7 Built-in Functions

a) FinishGameMessage (string-literal): The game will finish when the writer calls the

FinishGameMessage function. This function will display the message sent as argument on

the screen, ask the player to press a key, and finish execution.

b) isInInventory (item-name): The writer can check if a certain item is currently in the

player’s inventory when programming actions. Actions can only be performed in items

currently in the inventory, so the programmer can assume that the item containing the

action currently being programmed is also in the inventory.

c) The basic commands to navigate the game are already programmed for the writer and can

be used by the player during runtime, for example:

o look around/examine <name of item>: The player will be able to see the current

room’s description, as well as the description for any items in their inventory.

o show inventory: This command will display all items currently being carried by the

player.

o Error messages for actions not recognized.

o take command: Using the take command followed by an item that the player is not

currently carrying (but is present in in their current location) will place the item in

their inventory.

d) The game will also keep track of the player’s current location, inventory.

3.8 Program structure
Programs written in IFL are composed of the GameMainDef object definition and a series of object

(rooms and items) declarations.

These programs do not have a beginning or end, other than using the GameMainDef object to declare

the initial message and location of the game. Even though these programs have procedural sections,

they are considered “declarative”, that is, they are simply composed of definitions of objects. The

reason for this type of structure is that the player is in control of the game at all times. After the starting

room is presented, the player will decide where the program will continue by performing actions on

the rooms and items.

In order to end the game, the writer can call the FinishGameMessage function.

4. Project Plan

4.1 Process
The project was divided in three main steps, according to the structure of the files and the

programming languages used:

1) Creation of the project proposal, followed by the scanner, parser, IFL abstract syntax tree and

pretty-printer;

2) Creation of the language reference manual followed by the C-code interpreter (also programmed

in C);

3) Programming of the C abstract syntax tree, pretty-printer, and AST-to-AST converter (all of them

programmed in OCaml), as well as creation of the final report.

Even though the natural flow of the language would be switching steps 2) and 3), it became necessary

to know what type of C code the interpreter needed from the AST-to-AST program. For this reason, all

the features of the interpreter were created with sample C programs. After knowing exactly what code

was necessary, the C abstract syntax tree, pretty printer and AST-to-AST code were created keeping

those exact needs in mind.

4.2 Style guide
For C, common rules typically used for programming languages have been followed for clarity

(indentation, spaces, comments, .etc). When programming the OCaml files, the general guidelines

provided by Inria have been followed. These general guidelines can be found in the following URL:

 http://caml.inria.fr/resources/doc/guides/guidelines.en.html

Since the IFL syntax is similar to C structs or Java classes, using the same conventions for indentation,

naming of variables, spaces, comments, etc. is recommended when writing and formatting text. If

formatted in a clear and readable way, it will be intuitive and easy for a programmer to figure out what

the IFL code is doing, even if they have never written an IFL program before.

4.3 Project timeline
The table below shows the planned project timeline, which contains the main milestones:

Date Task

6/7/2013 Project proposal submitted

6/20/2013 Scanner, parser, AST, and pretty printer completed, all ambiguities resolved

6/28/2013 Language reference manual submitted

7/6/2013 "Hello, World" support for C interpreter using sample programs

7/19/2013 Support for all features of C interpreter except functions and variables with testing

7/28/2013 Support for all features of C interpreter with testing

8/5/2013 AST for C code, pretty printer, and AST-to-AST converter function

8/11/2013 Integration of OCaml and C code with testing

8/16/2013 Final report submitted

http://caml.inria.fr/resources/doc/guides/guidelines.en.html

4.4 Software Development Environment
The Ocaml code was developed using Inria’s compiler for Windows and CygWin. For developing C code,

MinGW (a minimalist GNU for Windows) was used, which includes a port of the GNU Compiler

Collection (GCC). All code was written on Notepad 2, and all commands were entered through the

command line on a Windows Vista (64-bit) machine.

4.5 Project log
Below are the project dates on the different milestones achieved:

Date Task

6/3/2013 Research of current interactive fiction programming languages completed

6/7/2013 Project proposal submitted

6/10/2013 Initial grammar specified

6/13/2013 Scanner created

6/20/2013 Parser and AST completed, all ambiguities resolved

6/25/2013 Pretty printer created for AST

6/28/2013 Language reference manual submitted

7/4/2013 Research for functions needed on C interpreter completed

7/6/2013 "Hello, World" support for C interpreter using sample programs

7/14/2013 Support for different types of objects in C interpreter with testing

7/19/2013 Support for exits and inventory in C interpreter with testing

7/24/2013 Support for functions within objects in C interpreter with testing

7/28/2013
Support for If, While, For, and variables within functions in C interpreter with
testing

8/2/2013 Support for built-in functions in C interpreter with testing

8/9/2013 AST for C code created

8/11/2013 Pretty printer for C AST created

8/15/2013 AST-to-AST converter created

8/16/2013 Final report submitted

5. Architectural design

5.1 Components of the translator

The main components of IFL are shown in the following diagram:

5.2 Interfaces between the components

As shown above, IFL has several components:

- Scanner: First, the programmer must write a file with extension .ifl that contains the items,

rooms, and actions they want to create in the game. This code that is treated by the scanner,

which generates tokens. The scanner recognizes tokens specified in scanner.mll. In order to

generate scanner.ml, ocamllex is used.

- Parser: The parser takes the tokens as an input and generates an abstract syntax tree. The code

is stored in parser.mly, and the AST types defined in ast.ml. Ocamlyacc is used to generate the

abstract syntax tree.

- Semantic check: After the abstract syntax tree is generated, the code is converted to C code

using ASTtoAST.ml. The C types are stored in CAst.ml, along with its pretty printer.

- Interpreter: Once the C code is generated containing the items, rooms, and actions that

compose the game (that is, equivalent code to the original .ifl file but written in C code), the

interpreter is ready to add these components to its environment and create the game. The

interpreter will also read the commands typed by the player and react based on the world

created by the IFL programmer. These features are provided and handled by IFL so that the

programmer can focus on designing the components of their story. The interpreter code can be

found in interpreter.c, which also uses two header files: types.h and headers.h.

Scanner C Interpreter Parser Semantic check

(AST to AST)

IFL AST and

pretty printer

C AST and

pretty printer

Input

Game created

Ready to interpret commands

6. Test plan

6.1 Representative programs
Instead of showing a couple of small programs, I am including one complete program that shows the

main and most representative components of IFL. This program includes several items, rooms, exits, an

action for the items, and calls to the functions already provided by the language (a call to isInInventory

to check if an item is in the inventory before using another one, and a call to finishGameMessage).

First, we see the IFL code for this program:

This code is pretty intuitive: several rooms and items are created, with an action (play) attached to an

item (flute). In this particular game, it is only possible to play the flute and finish the game if the charm

has been found before.

The equivalent C code is shown below (please note that this was one of the sample programs used to

test the interpreter):

The fields used to initialize rooms are the name, description, and any exits to other rooms. If there are

any exits, the object is initialized with a list of pointers for each compass direction. These point to the

room each individual exit is linked to, or NULL if there is not an exit in that direction.

The fields used to initialize Thing objects are the name, description, pointer to the room where the item

is located, a string with the name of its action, a pointer to the action function, and “false” to indicate

that the item is not in the inventory. As seen in the original IFL code, some of these fields are not

created by the player; they should be generated by the code converter in order to give the interpreter

all the information it needs.

Also, as seen at the bottom of the last listing and for the interpreter’s convenience, the number of items

is counted and an array with pointers to each of those items is created. This is very useful for the

interpreter in order to find out if an item exists and to locate it in memory.

Once compiled along with the C interpreter and executed, the game can be played. Below is a screen

capture of the game generated by the interpreted based on the above code, and the commands entered

to progress and complete the game.

6.2. Test suites used
Below is a list of the test suites prepared. The file names listed are the C file that the interpreter will use

and its equivalent IFL file.

For clarity, the header C files have not been listed in the table, even though they would change

depending on the available objects and functions.

Filenames Test type Interpreter status

01 helloworld.c
01 helloworld.ifl

Basic program that displays
the game introduction on the
screen. Since the initial
location of the player must
be set, one room is created.

At this point, the introduction can be
displayed but it's not possible to accept
player commands yet.

02 Two Rooms and Exit.c
02 Two Rooms and Exit.ifl

Basic program with two
rooms and an exit that
connects them.

* The program accepts compass directions
from the player.
* 'look around' command is available.
* Basic error messages are added when a
player tries to use a command that is not
available.

03 Item.c
03 Item.ifl

Basic program with one
room and one item.

* The 'take <name of item>' command
becomes available.
* Error messages are added when a player
wants to take an item that is not available.
* Inventory is added.
* 'examine <name of item>'command
becomes available.
* Error messages are added when a player
wants to examine an item that is not in their
inventory.
* 'show inventory' command becomes
available.
* Behavior of empty inventory tested;
message is shown to the player in this
situation.

04 basic_game_complete.c
04 basic_game_complete.ifl

Program with all the basic
elements: A starting room,
one item, and one action that
will finish the game when
used. This test was used
when functions were added.

* Interpreter is able to handle all features
listed above plus handling of functions.
* Error messages are displayed when a
player tries to use an action that is not
available for a certain item.
* FinishGameMessage() is added and can be
used by the programmer to finish the game.

05 game_and_inventory.c
05 game_and_inventory.ifl

Program will all the basic
elements mentioned above,
but including a slightly more
complex function that checks
whether an item is in the
inventory (on top of the item
being currently used) and
takes action depending on
the result.

* Program is able to handle more complex
functions.
* isInInventory() is added and can be used
by the programmer.

 These particular tests were chosen because they cover all the critical parts of the game, as seen above.

In addition, the interpreter was tested using player commands. The commands tested depend on the

feature added in each step and simply follow the table shown above. For example, during step 3 on the

table (having the basic program and one item as the test case), commands were tested based on the

features listed in the right column:

- ‘take <name of item>’ would be tested for the existing item.

- ‘take <name of item>’ would be tested for a non-existing item, verifying the error message.

- ‘show inventory’ would be tested with an empty inventory.

- ‘show inventory’ would be tested after having picked one item (later on, this would be tested

with several items).

- ‘examine <name of item>’ would be tested for a non-existing item, verifying the error message.

- ‘examine <name of item>’ would be tested for an existing item that is currently in the inventory.

- ‘examine <name of item>’ would be tested for an existing item that is currently not in the

inventory.

Similar tests would be performed for each of the steps and functions mentioned above.

7. Lessons Learned
The most important lesson learned from the project is how powerful OCaml is, and how simple it can

be to write a complete scanner, parser and abstract syntax tree.

A few months ago, I worked on a personal project that required the same type of work. It was not for a

programming language; my goal was to extract information for art pieces (name, description, filename,

tags, etc.) from a static HTML website and transfer that information to a SQL database in order to create

a dynamic website.

Using Java, I had the program scan through every character in the HTML files to find the right HTML

tokens and extract the fields I needed. Knowing there were many different HTML templates used and

over 100 files total, this was not an easy task. The amount of time and effort invested on that project

would have been reduced dramatically if I had been aware of OCaml’s features.

Regression testing was very useful. Starting with a simple “Hello, World” program and testing features

in iterations helped me verify that the program continued to be functional, while ensuring that no

errors had been introduced by adding a change or a new feature. This process also made version

control very easy, since the files could be archived after each iteration.

Having a close-to-final parser, scanner, and AST for my language, as requested by the professor, was

key in order to have a solid language reference manual close to the beginning of the project. While

small changes were necessary to streamline the interpreter portion of the project, these were just

minimal syntactical changes.

Even though I am used to having to learn new programming languages and produce results fast, dealing

with Ocaml errors was the main challenge I found. Some of these errors took days to resolve and

delayed the general progress of the project significantly. The learning curve for some OCaml features

was much steeper than I initially expected, so I was only able to get a quick working knowledge of them.

I would like to deepen my understanding of these features in the future.

Before this class, my knowledge of a compiler was very vague. While being very challenging at times

because of having to balance work and school during the short summer term, I have found that creating

my own language has been a fun, interesting, and rewarding learning experience. Because of my

personal interest in games, I plan on continuing to work on text-based gaming programming languages

projects.

8. Appendix: Interactive Fiction Language Code

Scanner (scanner.mll)

{ open Parser }

rule token = parse

 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ':' { COLON }

| ',' { COMMA }

| '.' { PERIOD }

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

| '=' { ASSIGN }

| ":=" { DECLARE }

| '!' { NOT }

| "==" { EQ }

| "!=" { NEQ }

| '<' { LT }

| "<=" { LEQ }

| '>' { GT }

| ">=" { GEQ }

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }

| "bool" { BOOL }

| "fun" { FUN }

| "true" { BOOLEANLITERAL(true) }

| "false" { BOOLEANLITERAL(false) }

| "int" { INT }

| "bool" { BOOL }

| "string" { STRING }

| "int" { ROOM }

| "bool" { THING }

| "string" { GAMEMAINDEF }

| "&&" { AND }

| "||" { OR }

| '\"'[^'"']*'\"' as lxm

 { STRINGLITERAL(String.sub lxm 1 ((String.length lxm) - 2)) }

| ['0'-'9']+ as lxm { LITERAL(int_of_string lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

 "*/" { token lexbuf }

| _ { comment lexbuf }

Parser (parser.mly)

%{ open Ast %}

/* Punctuation */

%token SEMI COLON LPAREN RPAREN LBRACE RBRACE COMMA QUOTE

/* Operators */

%token AND OR NOT PLUS MINUS TIMES DIVIDE ASSIGN DECLARE

/* Comparators */

%token EQ NEQ LT LEQ GT GEQ

/* Keywords */

%token IF ELSE FOR WHILE INT BOOL STRING ROOM THING GAMEMAINDEF FUN PERIOD

%token <int> LITERAL

%token <bool> BOOLEANLITERAL

%token <string> STRINGLITERAL

%token <string> ID

%token EOF

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN DECLARE

%left AND OR

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%right NOT

%left TIMES DIVIDE

%start program

%type <Ast.program> program

%%

program:

 /* nothing */ { [] }

 | program odecl { List.rev $1 }

odecl:

 ID COLON obtype LBRACE att_list fdecl_list RBRACE

 { { object_name = $1;

 object_type = $3;

 attrib = List.rev $5;

 fundecl = $6 } }

att_list:

 /* nothing */ { [] }

 | att_list att { $2 :: $1 }

att:

 ID ASSIGN expr SEMI {

 { attname = $1;

 attvalue = $3;

 } }

fdecl_list:

 /* nothing */ { [] }

 | fdecl_list fdecl { $2 :: $1 }

 fdecl:

 FUN ID LPAREN RPAREN LBRACE vdecl_list stmt_list RBRACE

 { { fname = $2;

 locals = List.rev $6;

 body = List.rev $7} }

primitive:

 BOOL { Bool }

 | INT { Int }

 | STRING { String }

obtype:

 ROOM { Room }

 | THING { Thing }

 | GAMEMAINDEF { GameMainDef }

 vdecl_list:

 /* nothing */ { [] }

 | vdecl_list vdecl { $2 :: $1 }

vdecl:

 primitive ID DECLARE expr SEMI {

 {

 vtype = $1;

 vname = $2;

 vvalue = $4;

 }}

stmt_list:

 /* nothing */ { [] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 expr SEMI { Expr($1) }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

 | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN stmt

 { For($3, $5, $7, $9) }

 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_opt:

 /* nothing */ { Noexpr }

 | expr { $1 }

expr:

 LITERAL { Literal($1) }

 | STRINGLITERAL { StringLiteral($1)}

 | BOOLEANLITERAL { BoolLiteral($1) }

 | ID { Id($1) }

 | NOT expr { Unaryop(Not, $2) }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr LT expr { Binop($1, Less, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Greater, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr OR expr { Binop($1, Or, $3) }

 | ID ASSIGN expr { Assign($1, $3) }

 | ID PERIOD ID { Call($1, $3) }

 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { $2 }

actuals_opt:

 /* nothing */ { [] }

 | actuals_list { List.rev $1 }

actuals_list:

 expr { [$1] }

 | actuals_list COMMA expr { $3 :: $1 }

IFL Abstract Syntax Tree and pretty printer (ast.ml)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq

 | And | Or | Not

type primitive = Int | Bool | String

type obtype = Room | Thing | GameMainDef

type expr =

 Literal of int

 | BoolLiteral of bool

 | StringLiteral of string

 | Id of string

 | Unaryop of op * expr

 | Binop of expr * op * expr

 | Assign of string * expr

 | Call of string * expr list

 | Noexpr

 type stmt =

 Block of stmt list

 | Expr of expr

 | If of expr * stmt * stmt

 | For of expr * expr * expr * stmt

 | While of expr * stmt

 type vdecl = {

 vtype : primitive;

 vname : string;

 vvalue : expr;

 }

 type fdecl = {

 fname : string;

 locals : vdecl list;

 body : stmt list;

 }

 type att = {

 attname: string;

 attvalue : string;

 }

 type odecl = {

 object_name : string;

 object_type : obtype;

 attrib : att list;

 fundecl : fdecl list;

 }

type program = odecl list

let rec string_of_type t = match t with

 Bool -> "bool"

 | Int -> "int"

 | String -> "string"

let rec string_of_obtype t = match t with

 | Room -> "Room"

 | Thing -> "Thing"

 | GameMainDef -> "GameMainDef"

let rec string_of_expr = function

 Literal(l) -> string_of_int l

 | BoolLiteral(false) -> "false"

 | BoolLiteral(true) -> "true"

 | StringLiteral(s) -> "\"" ^ String.escaped s ^ "\""

 | Id(s) -> s

 | Binop(e1, o, e2) -> "(" ^

 string_of_expr e1 ^ " " ^

 (match o with

 Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"

 | Equal -> "==" | Neq -> "!="

 | Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="

 | Or -> "||" | And -> "&&"

 | Not -> "!"

 | _ -> raise(Failure("illegal binop"))

) ^ " " ^

 string_of_expr e2 ^ ")"

 | Unaryop(o, e) -> "(" ^

 (match o with

 Not -> "!"

 | _ -> raise (Failure("illegal unary operator")))

 ^ string_of_expr e ^ ")"

 | Assign(v, e) -> v ^ " = " ^ string_of_expr e

 | Call(f, el) ->

 f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"

 | Noexpr -> ""

 let rec string_of_stmt = function

 Block(stmts) ->

 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"

 | Expr(expr) -> string_of_expr expr ^ ";\n";

 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt

s

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

 string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

 | For(e1, e2, e3, s) ->

 "for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^

 string_of_expr e3 ^ ") " ^ string_of_stmt s

 | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

 let string_of_vdecl vdecl =

 string_of_type vdecl.vtype ^ " " ^ vdecl.vname ^ " = " ^ string_of_expr

vdecl.vvalue ^ ";\n"

let string_of_fdecl fdecl =

 " FUN " ^ fdecl.fname ^ "() \n { \n" ^

 String.concat "" (List.map string_of_vdecl fdecl.locals) ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 "}\n"

let string_of_assignm att = att.attname ^ " = " ^ att.attvalue ^ ";\n"

let string_of_odecl odecl =

 odecl.object_name ^ " : " ^ string_of_obtype odecl.object_type ^ "\n{\n" ^

 String.concat "" (List.map string_of_assignm odecl.attrib) ^ "\n\n" ^

 String.concat "" (List.map string_of_fdecl odecl.fundecl) ^ "}\n"

let string_of_program (objs) =

 String.concat "\n" (List.map string_of_odecl objs)

C Abstract Syntax Tree and pretty printer (CAst.ml)

exception Error of string

type file = declaration list

and declaration =

 Decl of specifier list * declarator * initializr

 | Function of specifier list * declarator * statement

 | String of string

and declarator =

 Name of string

 | Array of declarator * expression

 | FuncDecl of declarator * parameter list

 | Pointer of declarator

 | NoDeclarator

and parameter =

 specifier list * declarator

and initializr =

 NoInitializer

 | ExprInitializer of expression

 | ArrayInitializer of expression list

and specifier =

 Type of string

 | Struct of string option * declaration list option

and statement =

 Nop

 | Expr of expression

 | Block of declaration list * statement list

 | If of expression * statement * statement

 | While of expression * statement

 | For of expression * expression * expression * statement

 | Quote of string

 | WhileSt of expression * operator * expression

 | WhileEnd of expression * operator * expression

and operator =

 Arrow | Dot |

 Deref | Addrof |

 Mult | Div |

 Plus | Minus |

 LT | LE | GT | GE |

 Equals | Noteq |

 LAnd |

 LOr |

 Assign |

 Comma

and expression =

 NoExpr

 | Literal of string

 | Id of string

 | BinOp of expression * operator * expression

 | PrefixOp of operator * expression

 | Conditional of expression * expression * expression

 | Call of expression * expression list

 | Index of expression * expression (* foo[bar] *)

 | Cast of specifier list * declarator * expression

 | CompoundLiteral of expression list

(* ** *)

let precedence_level = function

 Arrow | Dot -> 10

 | Deref | Addrof -> 9

 | Mult | Div -> 8

 | Plus | Minus -> 7

 | LT | LE | GT | GE -> 6

 | Equals | Noteq -> 5

 | LAnd -> 4

 | LOr -> 3

 | Assign -> 1

 | Comma -> 0

let is_right_associative = function

 Deref | Addrof | Assign -> true

 | _ -> false

let precedence_of_conditional = 2

let highest_precedence = 11

let string_of_operator = function

 Arrow -> "->"

 | Dot -> "."

 | Deref -> "*"

 | Addrof -> "&"

 | Mult -> " * "

 | Div -> " / "

 | Plus -> " + "

 | Minus -> " - "

 | LT -> " < "

 | LE -> " <="

 | GT -> " > "

 | GE -> " >= "

 | Equals -> " == "

 | Noteq -> " != "

 | LAnd -> " && "

 | LOr -> " || "

 | Assign -> " = "

 | Comma -> ", "

let indentation spaces =

 String.make (spaces / 8) '\t' ^

 String.make (spaces mod 8) ' '

let rec string_of_expression e =

 let (string, _) = expr e in string

and expr = function

 NoExpr -> "", highest_precedence

 | Literal(s) -> s, highest_precedence

 | Id(s) -> s, highest_precedence

 | BinOp(e1, op, e2) ->

 let (l, lp) = expr e1

 and (r, rp) = expr e2

 and p = precedence_level op

 and is_right = is_right_associative op in

 (if lp > p || (not is_right && lp = p) then l else "(" ^ l ^ ")") ^

 string_of_operator op ^

 (if rp > p || (is_right && rp = p) then r else "(" ^ r ^ ")"),

 p

 | PrefixOp(op, e) ->

 let (s, ep) = expr e

 and p = precedence_level op in

 string_of_operator op ^

 (if ep >= p then s else "(" ^ s ^ ")"), p

 | Conditional(e1, e2, e3) ->

 let (s1, p1) = expr e1

 and (s2, p2) = expr e2

 and (s3, p3) = expr e3 in

 (if p1 > precedence_of_conditional then s1 else "(" ^ s1 ^ ")") ^

 " ? " ^

 (if p2 > precedence_of_conditional then s2 else "(" ^ s2 ^ ")") ^

 " : " ^

 (if p3 > precedence_of_conditional then s3 else "(" ^ s3 ^ ")"),

 precedence_of_conditional

 | Call(e, el) ->

 let s1, _ = expr e

 in s1 ^ "(" ^ (* FIXME: precedence *)

 String.concat ", " (List.map (fun e -> fst (expr e)) el) ^ ")",

 highest_precedence

 | Index(e1, e2) ->

 let s1, p1 = expr e1

 and s2, _ = expr e2 in

 (if p1 = highest_precedence then s1 else "(" ^ s1 ^ ")") ^ "[" ^ s2 ^ "]",

 highest_precedence

 | Cast(sl, d, e) -> "((" ^ string_of_specifier_list sl ^

 string_of_declarator d ^ ") " ^ string_of_expression e ^ ")",

 highest_precedence

 | CompoundLiteral(el) ->

 "{\n " ^

 String.concat ",\n " (List.map string_of_expression el) ^

 "\n }", highest_precedence

 and string_of_specifier specifier =

 let aggregate_body s d =

 (match s with

 None -> ""

 | Some(s) -> " " ^ s) ^

 (match d with

 None -> ""

 | Some(d) -> " {\n " ^ (String.concat "\n "

 (List.map string_of_declaration d)) ^ "\n}")

 in

 match specifier with

 Type(s) -> s

 | Struct(s, d) ->

 "struct" ^ aggregate_body s d

 and string_of_specifier_list sl =

 List.fold_left (fun s sp -> s ^ string_of_specifier sp ^ " ") "" sl

 and string_of_declarator declarator =

 let rec prefix = function

 Name(s) -> s

 | Array(d, _) -> prefix d

 | FuncDecl(d, _) -> prefix d

 | Pointer(d) -> "(*" ^ prefix d

 | NoDeclarator -> ""

 in

 let rec suffix = function

 Name(_) -> ""

 | Array(d, e) ->

 "[" ^ string_of_expression e ^ "]" ^ suffix d

 | FuncDecl(d, pl) ->

 suffix d ^

 "(" ^ String.concat ", " (List.map string_of_parameter pl) ^ ")"

 | Pointer(d) -> ")" ^ suffix d

 | NoDeclarator -> ""

 in

 prefix declarator ^ suffix declarator

 and string_of_parameter (sl, decl) =

 (string_of_specifier_list sl) ^ (string_of_declarator decl)

 and string_of_statement ind = function

 Nop -> (indentation ind) ^ ";"

 | Expr(e) -> (indentation ind) ^ (string_of_expression e) ^ ";"

 | Block(dl, sl) -> indentation ind ^ "{\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "}"

 | If(e, Block(dl, sl), Nop) ->

 (indentation ind) ^ "if (" ^ (string_of_expression e) ^ ") {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "}"

 | If(e, Block(dl1, sl1), Block(dl2, sl2)) ->

 (indentation ind) ^ "if (" ^ (string_of_expression e) ^ ") {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl1 ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl1 ^

 indentation ind ^ "} else {" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl2 ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl2 ^

 indentation ind ^ "}"

 | If(e, Block(dl, sl), s2) ->

 (indentation ind) ^ "if (" ^ (string_of_expression e) ^ ") {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "} else\n" ^

 string_of_statement (ind + 2) s2

 | If(e, s1, Block(dl, sl)) ->

 (indentation ind) ^ "if (" ^ (string_of_expression e) ^ ")\n" ^

 (string_of_statement (ind + 2) s1) ^ "\n" ^

 indentation ind ^ "else {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "}"

 | If(e, s1, s2) ->

 (indentation ind) ^ "if (" ^ (string_of_expression e) ^ ")\n" ^

 (string_of_statement (ind + 2) s1) ^

 (match s2 with

 Nop -> ""

 | _ -> (indentation ind) ^ "else\n" ^

 (string_of_statement (ind + 2) s2)

)

 | While(e, Block(dl, sl)) ->

 indentation ind ^ "while (" ^ string_of_expression e ^ ") {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "}"

 | While(e, s) ->

 indentation ind ^ "while (" ^ string_of_expression e ^ ")\n" ^

 string_of_statement (ind + 2) s

 | For(e1, e2, e3, Block(dl, sl)) ->

 indentation ind ^ "for (" ^

 string_of_expression e1 ^ " ; " ^

 string_of_expression e2 ^ " ; " ^

 string_of_expression e3 ^ ") {\n" ^

 List.fold_left (fun s d -> s ^ indentation (ind + 2) ^

 string_of_declaration d ^ "\n") "" dl ^

 List.fold_left (fun s st -> s ^

 string_of_statement (ind + 2) st ^ "\n") "" sl ^

 indentation ind ^ "}"

 | For(e1, e2, e3, s) ->

 indentation ind ^ "for (" ^

 string_of_expression e1 ^ " ; " ^

 string_of_expression e2 ^ " ; " ^

 string_of_expression e3 ^ ")\n" ^

 (string_of_statement (ind + 2) s)

 | Quote(s) -> s

 | WhileSt(opr1, op, opr2) ->

 let (l, lp) = expr opr1

 and (r, rp) = expr opr2

 in

 "while (" ^ l ^ " " ^ string_of_operator op ^ " " ^

 r ^ ")\n{"

 | WhileEnd(opr1, op, opr2) ->

 let (l, lp) = expr opr1

 and (r, rp) = expr opr2

 in

 "}//while (" ^ l ^ " " ^ string_of_operator op ^ " " ^

 r ^ ")\n"

 and string_of_declaration = function

 Decl(sl, decl, init) ->

 (string_of_specifier_list sl) ^ (string_of_declarator decl) ^

 (match init with

 NoInitializer -> ";"

 | ExprInitializer(e) -> " = " ^ (string_of_expression e) ^ ";"

 | ArrayInitializer(el) ->

 " = { " ^ String.concat ", " (List.map string_of_expression el) ^ " };"

)

 | Function(sl, decl, body) ->

 (string_of_specifier_list sl) ^ (string_of_declarator decl) ^ " " ^

 (string_of_statement 0 body)

 | String(s) -> s

(** Inline blocks with no declarations *)

let rec flatten = function

 | Block([], sl) -> Block([], flatten_list sl)

 | If(e,s1,s2) -> If(e, flatten s1, flatten s2)

 | While(e,s) -> While(e, flatten s)

 | st -> st

and flatten_list = function

 [] -> []

 | Block([], sl)::tl -> (flatten_list sl) @ (flatten_list tl)

 | hd::tl -> (flatten hd)::(flatten_list tl)

IFL AST to C AST (asttoast.ml)

(* This file is not complete *)

open Ast

open Cast

type symbol_table = {

 parent : symbol_table option;

 variables : Cast.declaration.Decl list;

 functions: Cast.declaration.Function list;

}

type environment = {

 scope : symbol_table;

}

type t = Int | String | Bool

(* Find variables and functions, figure out if they exist *)

let rec find_variable (scope : symbol_table) name =

 try

 List.find (fun decl -> decl.name = name) scope.variables

 with Not_found ->

 match scope.parent with

 Some(parent) -> find_variable parent name

 | _ -> raise (Failure("This variable has not been defined."))

let variable_exists scope name =

 List.exists (fun decl -> decl.name = name) scope.variables

let rec find_function (scope : symbol_table) name =

 try

 List.find (fun f -> f.name = name) scope.functions

 with Not_found ->

 match scope.parent with

 Some(parent) -> find_function parent name

 | _ -> raise (Failure("This function has not been defined."))

let func_exists scope name =

 List.exists (fun f -> f.name = name) scope.functions

Interpreter header file – types.h

#ifndef _TYPESH_

#define _TYPESH_

/* Type definitions */

typedef enum { false, true } bool;

struct Exitlist

 {

 struct Room *north;

 struct Room *south;

 struct Room *east;

 struct Room *west;

 struct Room *northeast;

 struct Room *northwest;

 struct Room *southeast;

 struct Room *southwest;

 };

struct Room

 {

 char name[30];

 char desc[300];

 struct Exitlist exits;

 };

 struct Thing

{

 char name[30];

 char desc[300];

 struct Room *location;

 char action[300];

 void (*actionAddress)();

 bool inInventory;

 };

 struct GameMain

{

 struct Room *initialRoom;

 char intro[300];

 };

 #endif

 /* End of type definitions */

Interpreter header file – headers.h

#include "types.h"

#ifndef _HEADERSH_

#define _HEADERSH_

struct Room cave;

struct Room field;

struct Room yourRoom;

struct Thing charm;

void play();

struct Thing flute;

struct GameMain myGame;

int numberOfItems;

struct Thing *itemList[2];

#endif

Interpreter (Interpreter.c)

#include <stdio.h>

#include <string.h>

#include "types.h"

#include "headers.h"

/* Global variables */

char com1[20];

char com2[20];

struct Thing *inventory[10]={NULL};

struct Room *currentLocation=NULL;

bool gameFinished =false;

/* End of global variables */

 /*Start of included commands: inventory, look, take, examine */

showInventory ()

 {

 int i=0;

 if (inventory[0] == NULL)

 printf("\nYour inventory is empty.\n");

 else

 {

 printf("\nYou are carrying:\n");

 while ((inventory[i]!=NULL) && (i<10))

 {

 printf("%s\n", inventory[i]->name);

 i++;

 }

 }

 }

bool isInInventory (struct Thing item)

/*Returns whether the item passed as an argument is in the inventory or not.

*/

{

 if (item.inInventory)

 return true;

 else

 return false;

 }

lookAtRoom ()

 /* This procedure simply shows the description of the current room. */

 {

 printf("%s\n",currentLocation->desc);

 }

addToInventory (struct Thing *item)

 /* Adds the desired item to the inventory. */

 {

 bool added=false;

 int i=0;

 while ((added==false) && (i<10))

 {

 if (inventory[i]==NULL)

 {

 inventory[i] = item;

 added = true;

 item->inInventory= true;

 printf ("\nAdded to inventory: %s\n", item->name);

 }

 else i++;

 }

 }

 struct Thing *addressOfItem ()

 /* Receives a command (name of an item), finds the address

 of the item that corresponds to that name and returns the address. */

 {

 struct Thing *address =NULL;

 int i=0;

 while (address ==NULL && i<numberOfItems)

 {

 if (strcmp(com2, itemList[i]->name) == 0)

 address=itemList[i];

 else

 i++;

 }

 return address;

 }

takeItem ()

 /* Verifies whether the item is already in the inventory. If not, calls

addToInventory. */

 {

 struct Thing *item = addressOfItem ();

 if ((item==NULL) || (item->location != currentLocation))

 printf ("\nI don't think that's something you can take.\n");

 else

 {

 if (item->inInventory)

 printf ("You are already carrying it.");

 else

 addToInventory (item);

 }

 }

 examineItem ()

 /* Verifies whether the item is already in the inventory. If so, shows

its description.*/

 {

 struct Thing *item = addressOfItem ();

 if (item != NULL && item->inInventory)

 printf ("%s\n", item->desc);

 else

 printf ("You can't examine something unless it's an item in your

inventory.");

 }

finishGameMessage (char finalMessage[20])

 /* When the game has been completed, this procedure will display

 the text sent as an argument to the player and finish the game. */

 {

 printf ("\n%s\n\n", finalMessage);

 gameFinished=true;

 }

compassDirection ()

 {

 if ((strcmp(com2, "n") == 0) || (strcmp(com2, "north") == 0))

 {

 if (currentLocation->exits.north != NULL)

 { printf ("\nYou head north.\n\n");

 currentLocation = currentLocation->exits.north;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "s") == 0) || (strcmp(com2, "south") == 0))

 {

 if (currentLocation->exits.south != NULL)

 { printf ("\nYou head south.\n\n");

 currentLocation = currentLocation->exits.south;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "e") == 0) || (strcmp(com2, "east") == 0))

 {

 if (currentLocation->exits.east != NULL)

 { printf ("\nYou head east.\n\n");

 currentLocation = currentLocation->exits.east;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "w") == 0) || (strcmp(com2, "west") == 0))

 {

 if (currentLocation->exits.west != NULL)

 { printf ("\nYou head west.\n\n");

 currentLocation = currentLocation->exits.west;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "ne") == 0) || (strcmp(com2, "northeast") == 0))

 {

 if (currentLocation->exits.northeast != NULL)

 { printf ("\nYou head northeast.\n\n");

 currentLocation = currentLocation->exits.northeast;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "nw") == 0) || (strcmp(com2, "northwest") == 0))

 {

 if (currentLocation->exits.northwest != NULL)

 { printf ("\nYou head northwest.\n\n");

 currentLocation = currentLocation->exits.northwest;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "se") == 0) || (strcmp(com2, "southeast") == 0))

 {

 if (currentLocation->exits.southeast != NULL)

 { printf ("\nYou head southeast.\n\n");

 currentLocation = currentLocation->exits.southeast;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else

 if ((strcmp(com2, "sw") == 0) || (strcmp(com2, "southwest") == 0))

 {

 if (currentLocation->exits.southwest != NULL)

 { printf ("\nYou head southwest.\n\n");

 currentLocation = currentLocation->exits.southwest;

 lookAtRoom();

 }

 else printf ("\nYou can't go that way.\n");

 }

 else printf ("\nYou can't go that way.\n");

 }

evalCommands ()

 /* If the user type a known two-word command (take or examine)

 this procedure evaluates it and outputs the result to the user. */

 {

 if (strcmp(com1, "take") == 0)

 takeItem ();

 else

 if ((strcmp(com1, "show") == 0) && (strcmp(com2, "inventory") == 0))

 showInventory ();

 else

 if (strcmp(com1, "examine") == 0)

 examineItem ();

 else

 if ((strcmp(com1, "look") == 0) && (strcmp(com2, "around") == 0))

 lookAtRoom ();

 else

 if (strcmp(com1, "go") == 0)

 compassDirection();

 else

 if ((strcmp(com1, "exit") == 0) && (strcmp(com2, "now") == 0))

 gameFinished=true;

 else

 { struct Thing *item = addressOfItem ();

 if ((item != NULL) && (item->inInventory)

 && (strcmp(com1, item->action) == 0))

 item->actionAddress();

 else printf ("You can't do that!\n");

 }

 }

 readCommands()

 /* Reads the commands from the console and evaluates them. */

 {

 printf("\n> ");

 scanf("%s",com1);

 scanf("%s",com2);

 {evalCommands();}

 }

 main ()

 {

 printf("\n%s\n\n",myGame.intro);

 currentLocation = myGame.initialRoom;

 lookAtRoom();

 while (gameFinished==false)

 {

 readCommands ();

 }

 /* getch(); */

 }

