
Mathematical Expression Language

Language Proposal

COMS 4115 – Professor Edwards

Paresh Thatte – pat70@columbia.edu

Manjiri Phadke – mp3212@columbia.edu

Introduction

Mathematical notation is a language of symbols for representing patterns, restrictions and

relationships of entities in the form of one or more equations of a set of variables. Equations are often

represented in software systems. A small set of inputs can drive amortization schedule report,

permission lists can trigger violation alerts on trade restrictions, and risk models can re-calculate pre-

trading limits in real time.

Manipulating these equations by expansion, factorization, solving (simultaneously) and other symbolic

rearrangement using (high-school) algebra rules can reduce the complexity of a problem. MEL

provides a way to program these algebra rules to solve, simplify and manipulate in any way such

common mathematical equations.

Overview

Mathematical Expression Language (MEL) is a programming language that lets a programmer define

restriction rules or derivative relationships in the form of algebraic equations. The syntax allows you to

express one or more equations using the standard algebraic notation. Equations of a valid form can be

accepted and transformed by a programmer into a different form and other operations can be

performed in them.

One transformation possible is to express the equation in terms of one variable, or solve for it given

numbers. Other possible transformations are combining simultaneous equations, expanding a

factorized expression or factorizing a simplified expression, collecting terms containing one of the

variables in an expression.

Tokens

Basic math symbols: +, -, *, /, =, <, >, exp symbol - **

Separator: ,

Line Terminator: ;

Grouping: parentheses - (,)

Block delimiters – {, }

Line Comments: //

Block Comments: /*, */

Identifiers

String literals: Upper or lowercase character strings

Constants

Integer Literals: 0 - 9

Boolean: true, false

Operators

Basic math: +, -

Comparison: ==, !=, <, >, !

Assignment: =

Types

Collections - Array

Algebraic Types - Eq, Poly, Term, Sym, Coeff, Exp

Syntax

Function declaration - function

Conditional/Loop statements – if/then/else, for/while

Control keywords – return

Algebra keywords – lhs, rhs, terms, coeffs, exps, syms, num, den, (parts?)

Built-in functions

Term – hasSym, addSym, removeSym, print

Example program

A programmer could express “algebraic expansion" as a function in the RAL language, that is, you they

write something like

expand((x+y)**2)

and it would return

x**2 + 2*x*y + y**2

Using loop constructs the binomial expansion algorithm could accept any binomial equation of the

form

expand((a+b)**n)

and return all the terms in the summation, from k=0 to n, of

nCk*(a**(n-k)*b**k)

Another example is a "solve" function that can be written to accept an equation and a target variable

to solve for, in the form

solve(y, x + y = 0)

which would return

-x

Code example

function solve(Sym v, Eq e) {
 move(v, e.rhs, e.lhs);

 keep(v, e.lhs, e.rhs);
 print e.rhs;

}

function move (Sym v, Poly from, Poly to) {

 for(int i=0; i< from.terms.length; i++) {
 Term curTerm = from.terms[i];

 if(curTerm.hasSym(v)) {
 to.coeffs[i] = to.coeffs[i] - from.coeffs[i];

 to.terms[i].addSym(v);

 from.terms[i].removeSym(v);
 if(from.terms[i].length == 0) {

 from.coeffs[i] = 0;
 }

 }

 }
}

function keep (Sym v, Poly from, Poly to) {

 for(int i=0; i< from.terms.length; i++) {
 Term curTerm = from.terms[i];

 //move coeffs

 if(curTerm.syms.length > 1 || !curTerm.hasSym(v)) {
 to.curTerm.coeffs[i] = to.curTerm.coeffs[i] – from.coeffs[i];

 }
 for(int j =0; j<curTerm.syms.length; j++) {

 Sym curSym = curTerm.syms[j];

 if(curSym != v){
 to.terms[i].addSym(curSym);

 from.terms[i].removeSym(curSym);
 }

 }
 }

}

