
Project Proposal:

Advanced Arithmetic Language

COMS W4115

UNI: jc3783

Jimin Choi

Overview & Motivation

To understand compiler/interpreter concepts learned from COMS

W4115, I decided to implement an advanced arithmetic language.

Unlike a basic 4 function calculator, this language will support advanced

mathematical operations such as roots, powers, sequences, and

summations, etc. This language will support basic programming

language functionalities such as if-else statement blocks, loops, and

variables. As I listen to more lectures, I will be able to have more

concrete scope of this project.

I believe that implementing mathematical language is the best

way to practice programming language concepts learned from class, as

it will fit nicely to lexical analysis and parsing structures. Like other

languages supporting mathematical operations, users will have ability

to implement algorithms with this language. This language will be very

useful for anyone, as it will provide lightweight Matlab like

functionalities. Working on this project will give me valuable learning

experiences.

As mandated by professor Edwards, I will implement all language

features and compiler/interpreters in Ocaml. I found that learning

Ocaml language itself is a very challenging work, and I couldn’t get a

handle of it at all until today. The syntax of functional language and

using recursions for loops are too cryptic to me. These are my big

concerns that are not being addressed.

Features

- Mathematical Operations (+,-,*,/,%, <, >, <=, >=, ==, sqrt, power, root,

sum, avg, etc), trigonometric operators will not be supported.

- Variables, the scope can be either global or local

- If/else statement

- for/while loop

- Functions

- Variable data types – int, char, word(string), integer array (only

number array is allowed as this is a mathematical language)

Syntax /Sample program

function int getMinimum: array data

 int minimum = 0;

 for t = 0 ; t < data.size ; t=t+1

 if minimum > data[t]

 minimum = data[t];

 endif;

 endfor;

return minimum;

endfunction;

A function starts with a “function” keyword. Following data type

specifies the return type of a function. “getMinimum” is a function name.

The function arguments are followed by ‘:’. This is similar to Objective

C’s way of defining function arguments.

In this sample, the argument was an integer array. “data” is an

array name. The next line shows the integer variable declaration. For

loop syntax is similar to C type language’s other than not having a

parenthesis. Unlike C language, the end of function, if-else, and loop are

indicated by endfunction, endif, and endfor respectively instead of using

brackets. Any variable defined outside of any “function” blocks are

considered as global variables. Each statement will end with semicolon.

