String Computation Program

Final Report

Scott Pender
scp2135@columbia.edu

COMS4115 Fall 2012

12/20/2012

Table of Contents

j A [a1 i o Yo [U ot { oY TP PPPRRRPPRPPRPRRt

1.1 LAY/ L T3y o o ST

2.2 FUNCEIONS ..ttt e e bt e s s b s e e e s b et e e s bbb e e e s abb e e e saba e e e sabaeeesaaraeee s
2.3 Control StatemMeNnts AN BOOIEANSc...eiiiiieiiie ittt ettt sttt et st e e st esbee e sabeesabeesaseeesabeesbeeesnseesrenesareenns
24 Arrays, SErNES, QNG INTEEEIS ..veiiiiiiiie ittt e et e e e st te e e s et te e e s sabeeeeesbteeesssteeeeassaeeesastaeessassaeessnsseeeennns
24.1 A TNOTE ON PriNTING..cceeeiiiiiiiiiitee ettt e e s sttt e e e e e e s s sttt ateeeesssasaabbstaeeesssasssbeaaaeeesssassssssaneeeesenn
2.5 RUNNINE @ PrOramM .. e e e s e s s s s s nnnnnn
3 REFEIENCE IMIANUAL ... ittt h e s h e st st e bt e bt e e bt e sae e eateea b e et e e abeesheesabesabe et e ebe e beenneas
3.1 LEXICAl CONVENTIONS. ..c.uttetietiieiti ettt ettt sttt ettt e sheesae e st e et e b e e bt e s bt e sae e e st e eabeeabeesheesaeesabeeabe e be e seeameeemteenseesaens
3.1.1 o=y oYy =T G (N FE T g =T SR
3.1.2 NG AT Lo o SRR
3.13 L00e 0 0] 0 g T=T) F 3T OSSP PP PP OPPPPO
3.14 LiNE TOIMINGTOIS ..t et e e st e e s e et e e s s b et e e s b et e e s ambae e e sannaeeesansreeesannneeess
3.15 a1 e o ol O =T = ot =] USRS
3.2 Y olo] o 1T PP P PP PP P PP PP PP PPPPPPPPPPPPPPPRE
3.2.1 o o= =1 0 0 13
3.2.2 FUNCHIONS 1t s e e a e s ba e s ab e b e e sra e e sabe e snne s
3.23 L LA o] L= OO OO OO T R URUPUPRPPR
3.3 [0 =4 = 0103
3.4 LU T ot o TSP
34.1 FUNCEION DEFINTTION ..t ettt e e r e sb e e sreesanesane e
34.2 U ot ToT g I or- | | PP P PSP UPRUPRPPPR

R T V- T - o] L= TSP PP USRI
3.6 17 1=
3.6.1) 1 Y=t
3.6.2 F N YA oY) 4 T V=3RS
3.6.3 =Y =T
3.6.4 o] T Lo 1Y/ o 1= SR

3.7 [0 1= 3] [T

3.7.1 GENETIC EXPreSSION CONVENTIONS ...ccvviiiiiiieeieeeeeeeteeeeeeereeeeeeeeeeeeeeereereerereeerereretererererererereterereeereremememmmsmersrsmarnnnnes 8

3.7.2 (0o o [or= 1 =10 1= 14 o o IO PRSPPSO 9
3.7.3 L= LT 0 T 0T <T - |] 9
3.8 INPUL/OULPUL ..ttt ettt ettt et ettt e ettt eeeteeeeabee e taeesabeeebeeesabeeeabaeeasseeeaseeesaseesabesessaesabesessseesnsaessseesnseseseeas 10
3.8.1 L@ 1T 1 o101 PP PPPPPPPPPPPPPRE 10
3.8.2 Input (aVailable iN SCAM 2.01) ..ot e e e st e e st e e e bt e e e be e e sseesateeeneeesareeannes 10
3.9 CONTIOL STALEMENTS ..ottt ettt ettt e sttt e bt e e st e e s bt e e sabeesabe e e beeesabeeeasseesabeesaneeesabeesaseesnteesareeenanens 10
3001 TF(X) oot e et e e e e e et et e e et e et e e ee e e e s e e e e e e e e e eeeeeeeeeeeeeeeee e ee e e e e er e e eeeeeeans 10
3.9.2 WIVHILE(X) ©enteeteeeite ettt ettt sttt ettt h e s ae e st e bt e e b e s bt e s a et e at e eat e e sb e e sheesaeesabeeabe e be e b e e abeesmeeeneeenseeneens 10
oY [=Totfl 2] =1 o SR 11
4.1 PrOCESS ..ttt ettt e e e s b e e e e s s e e s e e e e s naree 11
8.2 SEYIE GUIE ..ottt et e e et eee st ee s e e s eseseaeeeeeseeseeeeeees e s e eee e e s eee s eeneeseeeesaee e eneeees e 11
4.3 T TN ettt ettt e s bt e s bt e e s a bt e s bt e e b te e s bt e e ab e e sab e e e bee e e a b e e e baeeaatee s beeesabee e baeeanreeebeeenareenas 11
4.4 ROIES / RESPONSIDIITIES «.eeevveieiieeitie ettt ettt ettt et e et e e et e e et eeetteeeebeeeetbeesabeeeesbeeeteseeaseesatesesseessesenseeas 11
4.5 Software DevelopmeNnt ENVIFONMENTc.uiii ettt e et e e e e rate e e e ett e e e e seateeeesnteeessstaeaesstaeananns 11
F N ol VLot AU T | B B L= ={ o PSR 12
LT 2 - o TR TSP USSP PPTRPRRTRRRPRRPRN 12
6.1 Y=Y 00] o (N o ={ =T 1 TP 12
[o E =T [=T o PP PP PSPPI 13
Y] 0 1= o | SRR 13
8.1 Yot 11 =T 0 o | OO OO P TPV PTOUPTUPROURRRTRIO 13
8.2 o Y= o1 0] YRS 14
8.3 ASTIMI ettt h e Rt Rt sae e e bRt e Rt b e e he e e ae e e et et e e b e e s heesanesane e 16
8.4 23V =T ole o [N o TR 17
8.5 L6000] o1 [0 1 o PRSP 18
8.6 o Yol U (= o | TPV TOPSR PR 20
8.7 [7or= 02 W 0| TP PTOTST PPN 23
8.8 Semantics.mlx (does not compile, BUt hey [THEd)oeieeiieeee ettt e e e arae e 23

1 Introduction

1.1 Mission

Design and implement a custom language whose compiler is built using O’Caml. The language should be able to solve a
problem by accepting a combination of commands, algorithms, and data, perform appropriate computation, and then
return meaningful output. Additionally, this goal should be achieved using a minimalistic base language.

1.2 Language Description

String Computation Program (scam) is a small, yet powerful compiled language created for the sole purpose of text
processing. Using a minimal character set, scam allows a program to interpret and process string tokens. Adapting a
hand-chosen blend of features from PERL, Python, and awk scripting languages, scam uses shorthand notation to denote
relationships between strings. Key components of the scam language include variables, arrays, functions, control
statements, strings, and integers.

Simply put, scam may be used to compute algorithms on string data. The language itself does not include any algorithms
to process this data beyond Boolean comparison operators. Rather than include processing rules in the language itself,
scam provides the ability to access included data structures and their respective attributes so that you as the developer
can create your own rules.

1.3 Syntax

The syntax of scam makes an easy task of developing a program to perform string manipulations. The tab-delimited
functions and control statements allow for programs that are both quick to develop an easy to read. Many of the
operators used in the language will be familiar to developers including the ‘=" assighment operator and common control
statements including if and which. Overall, scam is a comfortable and intuitive language to develop in that produces
efficient and useful code.

2 Tutorial
The String Computation Language is, as its name indicates, a string computation language that allows users to develop
quick code that can efficiently translate and manipulate input text.

2.1 Start with MAIN
Every program that is executed begins execution with the MAIN function, a common paradigm among today’s
programming languages. MAIN does not accept arguments from the command line and must be explicitly declared as
‘MAIN()’. A sample hello world program is listed below.
MAIN ()

a = “Hello”

b “world”
@ =a+™""+b

2.2 Functions

Many programs will require more than just a single function call. Using the recursive processing capabilities of scam,
functions may call themselves or any other defined function (independent of declaration order). Function names may
include any combination of letters and integers and may intermix capitalization at will (except for MAIN).

MAIN ()

2 = “A”
PrintA (A)

2.3 Control Statements and Booleans

Scam provides the IF and WHILE control statements for handling conditional operations. This may be useful for array
iteration or condition output. In both cases, the block of statements is executed after a Boolean condition is met. In
scam O is false and every other number (positive or negative) is evaluated as true. There is no explicit “true” or “false”
keyword in scam. It is important to note that a Boolean evaluation must result in an integer, so the sum of the parts of
any complex expression used must evaluate as an integer value. A sample usage of the WHILE conditional statement is
included below.

MAIN ()
X = 2
y =V test ”
WHILE (x>0)
@=y
x=x -1

2.4 Arrays, Strings, and Integers

Scam is not intended to be used for any real mathematical computation, and intentionally only includes the ‘+’ and ‘-
operators for arithmetic on integers. The purpose of including them at all is for Boolean evaluation (as mentioned
earlier) and for referencing an index of the subset of a string or array. Types may be explicitly set using the type
indicators int, str, and str[] but do not have to be if you wish to keep a variable’s type mutable.

2.4.1 A Note on Printing
Scam allows the printing of string values only. Integers may never be output and there is no conversion operation for an
integer. If there is a need to output an integer value it must be defined as a string from the beginning. Similarly, arrays
may not be printed directly. If a part or whole of the array must be printed, it must be done through array reference. A
sample use of integers, arrays, and strings in a printing capacity is shown below that also makes use of the length
function to get the length of an array.
MAIN ()

g = var

strl] x = [“17,72","3",y]

int len = |x]|

WHILE (len)
@ = x[len]

2.5 Running a Program
In order to execute a scam program a developer must use the following syntax in a linux/unix-based operating system:

./scam [-a|-b|-c][-d] < program_name.scam
The following options are available (mostly for debugging purposes):
-a (ast) Print the abstract syntax tree generated during parsing

-b (bytecode) Print the bytecode representation generated during compilation

-c (compile) Compile and execute the program (default mode if no flag is set)

-d (debug) Compile and execute the program with a printout of the machine state as each
bytecode operation is executed.

3 Reference Manual

3.1 Lexical Conventions
There are four kinds of tokens: identifiers, keywords, expression operators, and other separators.

3.1.1 Identifiers (Names)
An identifier may consist of a sequence of letters and digits. Special characters are not allowed. Identifiers are used to
specify function and variable names. Reserved keywords may not be used as identifiers.

3.1.2 Keywords
The following keywords are reserved for use as keywords and may not be used otherwise:

FOREACH int MAIN
WHILE str
IF str(]

3.1.3 Comments
The ? character denotes a single-line comment. The ? must be used independently, outside of quotation marks. Multi-

line comments are not available.

3.1.4 Line Terminators
The line feed character is used to terminate a line. More simply, there is no formal line termination character; lines are
terminated automatically when a new line is fed to the parser.

3.1.5 Whitespace Characters

As noted previously the line feed character (\n) is used to denote line termination. The tab character (\t) denotes
ownership of statements to the last statement that used one less tab character. This is used in cases of control
statements and functions where the statements to be executed are grouped with by indentation. Control statements
may be nested within functions, but functions may never be nested (only function calls). The space character “ “ is
generally ignored, though it may be required to separate otherwise adjacent identifiers.

EX: myFunction(X,Y)
IF(1<2)
@="Hello world”
@="If they are strings, the concatenation of X & Yis " + X +Y

3.2 Scope

3.2.1 Programs
A program must be entirely self-contained and does not allow interaction with other programs directly.

3.2.2 Functions
Functions may be called by any other function independent of function definition order. There are no access modifiers.

3.2.3 Variables
Variables are not inherited and there are no global variables. A variable must be defined explicitly within each function
as either a parameter or local variable.

3.3 Programs
Each program in scam consists of a document containing one MAIN function and zero to many helper functions.

3.4 Functions
A function is the definition of a sequence of statements to be executed in a specific order. Functions may accept input
variables and return a value. Functions may also be called recursively.

3.4.1 Function definition

The following example demonstrates a function definition. The method signature is for a function 'myLabel' that accepts
parameters X,Y, and Z. Note that Z must be an integer in this definition. Tab is used as the delimiter to denote the
definition of a function. Within the function definition, the function label may be set like a variable to indicate a return
value. The default return value is "". Since this is set like a variable, it can be used to make recursive calls to itself.

Ex: myLabel(X, Y, int Z)
? Impl of myLabel
myLabel = "optional returnValue"

3.4.2 Function call
Functions may be called from within any other function in a program. The example below demonstrates a function call.

Ex: myLabel (X, Y, Z)

Implicit return from function (can return string or integer) can be set as value of another variable or sent to output
(console, file

Ex: @ = mylabel (X,Y,2)

3.5 Variables

Variables are dynamically typed. A variable can be set to point to an integer, array, or string. A variable can later be re-
defined to be of a different type. However, variables must still be referenced and defined properly according to the rules
for each type. Type reference issues may be solved using static typing through explicit type enforcement. Variables are
set using the ‘=’ character with the variable identifier on the left-hand-side and the intended value on the right-hand-
side. The following scenarios demonstrate variable definitions and their resulting values.

o X=2
o Define variable X as an integer value of 2
o« X=42"
o Define variable X as string value of “2”
e XY="strinng"
o Define variable XY as string "strinng"
o XY = []
o Define XX as an empty array
o [X]

o Length of value in X.
= |f string, return string length

= Ifarray, return array length
= Ifinteger, return integer value
* Default return value for undefined variables is 0

3.6 Types

3.6.1 Strings

Strings, the primary focus of the scam language, may be compiled into an array of strings and may themselves be
referenced as an array of (individual character) strings. Strings may be composed of any characters except for quotes
themselves (or string formatting characters).

own

Stings are surrounded by quotes (“”) at all times. Everything between an opening and closing quote is part of that string.
There is no need to escape characters within a string as everything within quotes is valid except for string formatting

characters. String formatting characters, ~N for new line and ~T for tab character, may not be escaped.

String values may be concatenated using the string concatenation operator.

“un

Whenever a string value is evaluated as null or is yet undefined, the strings value will be “” (empty string).

Since a string is itself an array, a string’s length, value at an index, and substring may be referenced in the same manner
as an array.

3.6.2 Arrays of Strings

An array of strings is effectively a two-dimensional array since a string is an array itself. However, an array may not be
defined as having more than one dimension. Arrays are only defined for string values, numbers are not permitted. Index
order must be sequential and starts at 0.

Since array variables may continuously be re-assigned it is possible (though computationally costly) to construct an
empty array, create a new array that contains one more element, and assign the original variable containing the array,
the value of the new array. This could then be repeated iteratively using the array concatenation operator.

3.6.2.1 Array Definition

o X=[]
= Empty array of length 0.
o M=[XY,Z]

= Create an array where M[0]=X, M[1]=Y, & M[2]=Z. If more than one array value is specified in this
manner, all values MUST be string values.
°© R=[x]
= [f xis an integer this will yield an array of size x; if x is a string this will yield a single-celled array
containing the string value of x.
o MI[0] = “mystring”
= Explicitly define the value at an index.

o MI[0]=X[1]
* Set the value at an index equal to the value of another array’s cell. The referenced cell appears as a
string value.
o M=X

* Set one array to the value of another array. Overwrite existing array.

3.6.2.2 Array Reference
o X[indexVal]

= Returns cell of index value, previously defined as a variable. If referenced cell has no value, return

un

= Represents the sub-array containing the first 3 cells.

* The name of the array returns entire array.
o [X|
= Return the array length.
o Reference to non-existent cell (outside array bounds) also yields “”.

3.6.3 Integer
Integers [0-9] are used in the context of array manipulation. Mathematical operations are very simplistic, limited to
addition and subtraction operations. Boolean true and false are represented by the integer values 1 and O respectively.

To obtain the string equivalent of an integer the integer must be surrounded by quotes (“9”).

Since a negative array index or length may not be derived or used, a negative integer value serves no true purpose that
coincides with the purpose of scam. As a result, there is no negative (-) unary operator defined for integers.

3.6.4 Explicit types

Any variable set to the value of a type listed previously may be re-assigned to another type without conflict as long as
references to that variable are appropriate to the new type. In some circumstances we would like to avoid the potential
conflict while referencing a variable by explicitly setting a variable’s type. Note that this qualifier may also be used in
function parameters to enforce types for input. The following qualifiers are provided immediately prior to a variable’s
identifier.

3.6.4.1 int <var_name>
Integer type.

3.6.4.2 str <var_name>
String type.

3.6.4.3 str[]<var_name>
String array type.

3.7 Expressions

3.7.1 Generic expression conventions
Notation described here may be used on all types.

3.7.1.1 (expression)
Parentheses are used to group expressions. Nested parentheses are allowed. Strings and arrays may only use

parenthesis with equality operators.

3.7.1.2 Equality operators

Equality operators group left to right. Equality operators are valid for any type (string, array, or integer) and are used to
compare value. Arrays must have the same size and all values in corresponding indices must be equal to be considered
equal. Equality operators yield 0 if the specified relation is false and 1 if it is true.

3.7.1.2.1 expression == expression
3.7.1.2.2 expression != expression

3.7.2 Concatenation
The ‘+’ symbol has an entirely different meaning in the context of strings and arrays than it does in the context of integer
algebraic operations.

3.7.2.1 string + string (String Concatenation)
Two or more strings or variables with string values may be appended together. When the resulting string is formed, the
input strings are joined from left to right.

Ex: myStr = “Hello”+ “” + “World!”
@=myStr
- # Hello World!

3.7.2.2 array + array (Array Concatenation)

Two or more arrays or variables with array values may be appended together. When the resulting array is formed, arrays
are added from left to right with the leftmost array’s contents starting at the 0 index, effectively following the same
pattern as string concatenation.

3.7.3 Integer Operators
The following operators may only be used when all operands are integers. Note that many of these operators consume
or return Boolean values and that in scam Boolean values are represented by the integers 1 and 0.

3.7.3.1 Unary Operators
Expressions with unary operators group right to left. Unary operators yield 0 if the specified relation is false and 1 if it is
true.

3.7.3.1.1 lexpression
Exclamation point denotes the NOT operator. True if the expression is false (0).

3.7.3.2 Relational operators
The relational operators group left to right. Relational operators yield 0 if the specified relation is false and 1 if it is true.

3.7.3.2.1 expression < expression
3.7.3.2.2 expression > expression
3.7.3.2.3 expression <= expression
3.7.3.2.4 expression >= expression

3.7.3.3 expression || expression
A double pipe symbol denotes the OR operator. True if either expression is true (1). If an integer value is anything other
than 0 it will evaluate to true.

3.7.3.4 expression && expression
A double ampersand denotes the AND operator. True if both expressions are true (1). If an integer value is anything
other than 0 it will evaluate to true.

3.7.3.5 Integer Algebra
The following functions have specific behavior defined for integers that differs from the behavior defined for strings and
arrays. Scam follows standard conventions for integer algebraic evaluation with operators grouped left to right.

3.7.3.5.1 expression + expression

3.7.3.5.2 expression - expression
3.8 Input/Output
3.8.1 Output

3.8.1.1 Output X to console (concatenates all string values, available for strings only)
° @=X

3.8.1.2 Output to file (available in scam 2.0!)
o @filepath = "text to print to file"
e @"C:/my folder/textfile" = "text to print to file"

3.8.2 Input (available in scam 2.0!)

3.8.2.1 From console

e X=@

3.8.2.2 From file
e X = @filepath
e X=@"./my folder/filename.txt”

3.8.2.3 From argumentin MAIN
e X=@1

3.9 Control Statements
Pre-defined labels using the same notation as a standard function. The evaluated expression will accept 0 as false (unless
lis used). All other values are true.

3.9.1 IF(X)
IF (X)
Do a bunch of stuff

3.9.2 WHILE(X)
WHILE(X)
Do a bunch of stuff

10

4 Project Plan

4.1 Process

The project plan used was to apply a very simple waterfall approach and get the front-end working befor the backend.
While an iterative approach would have been much more efficient to weed out bugs and prevent the inevitable mass of
errors (once | discovered what would not | work in the program execution | had to re-work earlier stages), the waterfall
approach was the only option due to limitations on time and understanding of the implementation details.

4.2 Style Guide
The following basic principles of coding style were used by all members of my team:

e Avoid external libraries where possible — it makes the code less portable.

e Uses comments everywhere possible to explain what you are doing. It can help when others look at your code
and it can help when you take a large break between development of components.

e Unless it becomes impossible, develop to the spec, not your own tendencies

e Use a functional style wherever possible

e Indent and space your code properly so it is readable and easy to find for debugging/review purposes.

e K.ILS.S. — Keep the code as simple and brief as possible

e Use functions everywhere. If you are writing code more than once, you are writing it too many times.

e Wrap everything in exception handlers during testing/development. Isolate the error handling to a single
module before deployment.

o [f all else fails, just try to make it work.

4.3 Timeline

September October November December
Task / Week 6| 7 10| 11| 12|13 |14 | 15
Proposal

Reference Manual
Ast
Compiler

Bytecode

Bytecode Interpreter

Testing

4.4 Roles / Responsibilities
Developer/Manager/Tester(limited) : Scott Pender

4.5 Software Development Environment
| mostly use an Ubuntu VM with a combination of the base terminal and gedit. After some recent internet issues | have
switched to a Mac using the base terminal and TextWrangler for code writing.

Good code was used for code hosting and versioning (http://code.google.com/p/string-computation-program/) — while
it is not needed for one person, | always trust a cloud before a VM. Also, | really wanted to try out using GIT as | had not
used it before.

11

5 Architectural Design

An input program is fed directly into the top-level program. With the help of the Bytecode and Ast definition files code is
handed off to the Scanner, then the Parser, then the Compiler, then the Bytecode Interpreter. A Semantic Analyzer was
prepared to handle type resolution and enforcement, but there was not enough time to deploy a final version in the
distributed code. | implemented ALL of the controls.

Tom-level code
Execution

Bytecode
Interpreter

Scanner Parser Compiler

6 TestPlan

There are a number of errors in the programs execution. Much of this is a result of little testing being completed. A lack
of time, a lack of team resources, and poor project management limited the test window to about 2 days. Currently
much of it stands untested. The test code is not significant enough to include since | had very little time for testing. A
bash script was prepared to test a large number of cases simultaneously, though it was rarely used.

6.1 Sample Program
A sample of a small program in scam is provided below.

? This is a program to compare files called “diff”
? The program is called using the following command:
? “scam diff filenamel filename2” (without quotes)

MAIN ()
datal = @1
data2 Q2
DIFF (datal, data2)
@ = “Diff test complete”

DIFF (filel, file2)
lineNum = 0
filelUnfinished = 1
file2Unfinished = 1
WHILE (filelUnfinished OR file2Unfinished)
IF (lineNum > filel)
filelUnfinished = 0
@ = “DIFF = Line ” + lineNum + “of ” + @2 + ™ does not exist in ” + @1
IF(lineNum > file2)
file2Unfinished = (0)

12

@ = “DIFF = Line ” + lineNum + “ of ” + @1 + ™ does not exist in ” + @2
IF(filelUnfinished AND file2Unfinished)
IF(filel[lineNum] != file2[lineNum])
COMPARE LINES (filel (lineNum), file2(lineNum)), lineNum)
lineNum = lineNum + 1

COMPARE LINES (linel, line2, lineNum)
charNum = 0
testFinished = 0
WHILE (!testFinished)
IF(linel [charNum]== line2 [charNum])
@ = “DIFF = Character ” + charNum + “ of line ” + lineNum + “ does not match”
IF((charNum >= linel) OR (charNum >= line2))
testFinished =1
charNum = charNum + 1

7 Lessons Learned

The biggest lesson learned here is to constantly re-evaluate your timelines, requirements, and realistic goals to achieve
in a final product. In this project | did not re-evaluate my options until the very last minute at which point | has already
spent entirely too much time on components that did not function properly. | did not clearly establish the requirements
—surely a one person team will produce a smaller product, but to what extent and where should my focus have been?
Advice for future students: work with a team, collaborate oftern and early, and PLAN PLAN PLAN. Also, get a watch —
time is key.

8 Appendix

8.1 Scanner.ml

{ open Parser }

rule token = parse
' ' "\r' '\n'] {token lexbuf} (* Whitespace *)

[

| 2! {comment lexbuf} (* Comments *)
["\"'" ([*'\"']+ as str) '\"' {STRING(str)} (* strings %)
["\t' {TAB}

(**] '"\t'+'\n' {TABENDL} (* allow tabs at the end of a line *)*)
| (" {LPAREN}

| ") {RPAREN }

| [{LBRACK}

['] {RBRACK}

| "+ {PLUS}

[7=0 {MINUS}

| =W {EQ}

| = [NEQ}

| < {LT}

| o> {GT}

| me=r {LEQ)

[>=" {GEQ}

| "&&" {AND}

[{OR}

[{NOT}

| ', {COMMA }

[Vg? {COLON}

[" {BAR}

| =" {ASSIGN}

| "FOREACH" {FOREACH}

| "foreach" {FOREACH}

| "WHILE" {WHILE}

| "while™ {WHILE}

13

8.2 Parser.mly

params_opt: /* function parameters */
/* nothing */ {stab:=[]; [] } /* arbitrary place to reset table for ea function */
| params list { stab:=[]; List.rev $1 }

params list: /* build function parameters as list */

vdecl { [$1] }
| params list COMMA vdecl { $3 :: $1 }
vdecl:
INT ID {{varType = Ast.Int; varName = $2; dType = Ast.Int}}
| STR ID {{varType = Ast.Str; varName = $2; dType = Ast.Str}}
| ARR ID {{varType = Ast.Arr; varName = $2; dType = Ast.Arr}}
| ID {{varType = Ast.Any; varName = $1; dType = Ast.Any}}
stmt list:
/* nothing */ { [] }
| stmt list TAB stmt { $3 :: $1 }
/*
stmt_tabopt:
TABENDL {} _tabopt
I {}
*/
stmt:
RETURN expr { Return($2) }
| IF LPAREN expr RPAREN stmt list %prec END { If($3, Block(List.rev $5)) }
| WHILE LPAREN expr RPAREN stmt list %prec END { While($3, Block(List.rev $5)) }
/*| IO term ASSIGN expr {Output ($2, $4)} id, string; any */
| IO ASSIGN expr {Output (Null, $3)} /* any */
| vdecl ASSIGN expr {stab := $1::!stab; Assign($1l, $3)}
| vdecl {stab := $1::!stab; Assign($1l, Term(Null))}
| ID LBRACK INTEGER RBRACK ASSIGN expr {SetAIndex(Id($1l), Integer($3), $6)}
expr:
term {Term($1)}
| LPAREN expr RPAREN{ $2 }
| ID LPAREN args opt RPAREN { Call($1l, $3) }
| ID LBRACK term COLON term RBRACK {Range (Id($1),$3,$5)} /* int,id; int,id */
/* Binops */
| expr PLUS term { Binop($1, Add, $3) } /* int, string, id, array */
| expr MINUS term { Binop($1, Sub, $3) } /* int, id */
| expr EQ term { Binop($1l, Eq, $3) } /* string, array, id, int */
| expr NEQ term { Binop($1l, Negq, $3) } /* string, array, id, int */
| expr LT term { Binop($1, Lt, $3) } /* int, id */
| expr GT term { Binop($1l, Gt, $3) } /* int, id */
| expr LEQ term { Binop($1l, Leq, $3) } /* int, id */
| expr GEQ term { Binop($1l, Geq, $3) '} /* int, id */
| expr AND term { Binop($1, And, $3) } /* int, id */
| expr OR term { Binop($1l, Or, $3) '} /* int, id */
| ID LBRACK term RBRACK {Binop (Term(Id($1l)), Vat, $3)} /* int, id */
/* Unops */
| NOT expr {Unop ($2,Not)} /* resolves to int */
/*| IO term {Unop (Term($2),In)} /* string, id, int */
| BAR term BAR {Unop (Term($2) ,Len) }
term:
iD { Id(s1) }
| INTEGER { Integer($1) }
| STRING { String($1) }
| LBRACK term opt RBRACK{ Array($2) } /* int, vars, strings */
args_opt:

/* nothing */ { [] }
| args list { List.rev $1 }

args list:
expr { [$1] }

| Id(s) -> s
| Array(el) ->

"[" ©~ String.concat ", " (List.map string of term el) ~ "]"
[Null -> ""
let rec string of expr = function
Term(a) -> string of term a
| Call(f, el) -> £ ~ "(" ~ String.concat ", " (List.map string of expr el) ~ ")"
| Range(id, al, a2) -> string of term id ~ "[" ” string of term al ~ ":" ” string of term a2 ~ "]"
| Binop(el, o, a) -> (match o with
Add -> string of expr el ~ " + " ~ string of term a
| Sub -> string of expr el ~ " - " ” string of term a
| Eq -> string of expr el ©~ " == " % string of term a
| Neqg -> string of expr el ~ " =" %~ string of term a
| Lt -> string of expr el ~ " < " ” string of term a
| Leg -> string of expr el ~ " <= " % string of term a
| Gt -> string of expr el ©~ " > " ~ string of term a
| Gegq -> string of expr el ~ " >= " % string of term a
| And -> string of expr el ~ " && " * string of term a
| Or -> string of expr el ~ " || " % string of term a
| Vat -> string of expr el ~ "[" ~ string of term a ~ "]"
| _ =>"") (* will never happen, but satisfies compiler *)
| Unop (v, o) —-> (match o with
Len -> "|" ~ string of expr v ~ "|"
| Not -> "!" ~ string of expr v
| In -> "@" ~ string of expr v
| _ =>"") (* will never happen, but satisfies compiler *)
let rec string of stmt = function

Block (stmts) -> print endline "block";
"\n\t" ~ String.concat "\t" (List.map string of stmt stmts) ~ "\n"

| Return(expr) -> "RETURN " * string of expr expr *~ "\n";
| If(e, s) -> "IF (" ~ string of expr e ~ ")\n" ” string of stmt s
| While(e, s) -> "WHILE (" ~ string of expr e ©~ ") " ” string of stmt s
| Output (dest, src) -> "@" ~ string of term dest ~ " = " ” string of expr src
| Assign(v, e) -> string of var v .~ " = " % string of expr e
| SetAIndex(id, i, e) -> string of term id ~ "[" * string of term 1 ~ "] = " ~ string of expr e

let string of fdecl fdecl =

fdecl.fname ~ " (" ~ String.concat ", " (List.map string of var fdecl.params) ~ ")\n\t"
A String.concat ", " (List.map string of var (fdecl.locals)) ~ "\n\t" %
String.concat "\n\t" (List.map string of stmt fdecl.body) ~ "\n"

S

"Locals: "

let string of program program =
String.concat "\n" (List.map string of fdecl (List.rev (snd program)))

8.4 Bytecode.ml

Beg of int
Bne of int
Bra of int
H1t

* Branch relative if top-of-stack is zero *)
* Branch relative if top-of-stack is non-zero *)
* Branch relative *)

type bstmt =
Int of int (* add an int to the heap *)
| Str of string (* add a string to the heap *)
| Arr of int * int (* array length, is empty *)
| Drp (* Discard a value *)
| Opr of Ast.op * Ast.typ * int (* Perform all operations ¥*)
| Lod of int * Fetch local variable *)
| Sto of int * Store local variable *)
| Jsr of int * Call function by absolute address *)
| Ent of int * Push FP, FP -> SP, SP += i *)
|
|
|
|
|

(
(
(
(
Ret of int (* Restore FP, SP, consume formals, push result *)
(
(
(
(

* Terminate *)

type prog = {

17

text : bstmt array;

let string of type = function
Ast.Int -> "I"
| Ast.Arr -> "A"
| Ast.Str -> "S"

| Ast.Any -> "NE"

function

(* Code for all the functions

string of stmt
Int (i) -> "Int
| Str(s) ->

| Arr(l, £f) ->
| Drp —-> "Drp"

| Opr (Ast.Add, t,
| Opr (Ast.Sub, t,
| Opr (Ast.Eq, t,

| Opr (Ast.Neq, t,
| Opr(Ast.Lt, t,

| Opr(Ast.Leq, t,
| Opr(Ast.Gt, t,

| Opr (Ast.Geq, t,
| Opr(Ast.And, t,
| Opr t,

| Opr (Ast. Vat, =
| Opr (Ast.Not, t,
|

| Opr(Ast.Len, t,
| Opr (Ast.Out,
| Opr (Ast.Rng,
| Opr(Ast.Sai,
| Lod

| Sto

| Jsr

| Ent

| Ret

| Bne

|

|

|

tr
tl
tl
"Lod
"Sto
"Jsr
"Ent
"Ret
"Bne
Beqg
Bra
Hlt

"Beq

(
(
(
(
(
(
(
(
(
(
(
(
Opr (Ast.In, t,
(
(
(
(
(
(
(
(
(
(
(
("Bra

i)
i)
i)
i)
i)
i)
i)
i)

>

let
let funca

string of

"

A

a)
a)

a)

a)

a)

a)

a)

a)
a)

a)

a)
a)

a)

"

"

"

"

"

"

"

"

nH1E"

_prog p
Array.mapi
(fun i s -> string of int i

"Str \llll
"Arr

"

in String.concat "\n"

8.5 Compile.ml

open Ast
open Bytecode

module StringMap

(* Symbol table:

type env = {
function index
local index

(* val enum :

string of int 1
s ll\""
string of int 1

A A

A AnA

string of int f

-> "Add " ”* string of type t ~ " " % string of int
-> "Sub " ” string of type t ©~ " " ” string of int
> "Eql " ~ string of type t ~ " " ” string of int a
-> "Neq " % string of type t ~ " " % string of int
> "Lt " ©* string of type t *~ " " % string of int a
-> "Leq " ” string of type t ~ " " % string of int
> "Gt " ©~ string of type t *~ " " ” string of int a
-> "Geq " ” string of type t ~ " " % string of int
-> "And " * string of type t *~ " " ” string of int
> "Or " ~ string of type t ~ " " % string of int a
-> "Vat " %~ string of type t ~ " " % string of int
-> "Not " # string of type t ~ " " ” string of int
> "In " ”~ string of type t ~ " " % string of int a
-> "Len " ©~ string of type t ~ " " ” string of int
-> "Out " % string of type t ~ " " % string of int
-> "Rng " © string of type t ~ " " % string of int
-> "Sai " ”~ string of type t *~ " " ” string of int
string of int i
string of int 1
string of int i
string of int 1
string of int i
string of int 1
string of int 1
string of int i

A non

(Array.to list funca)

Map.Make (String)

int ->

int StringMap.t;
int StringMap.t;

'a list ->

(int * 'a)

~ string of stmt s)

list *)

p.text

Information about all the names in scope *)

(* Index for each function *)
(* FP offset for args,

locals ¥*)

a
a

a

(V)

(U T

(* takes a normal list and rebuilds it with stack indices as fst of pair *)
let rec enum stride n

[1 —>
| hd::tl

[1

-> (n,

hd)

function

enum stride (n+stride)

(* get only the names of vars from var types ¥*)

tl

let rec get names vars = List.map (fun v -> v.varName) vars

(* val string map pairs StringMap 'a -> (int * 'a) list -> StringMap 'a *)
let string map pairs map pairs =
List.fold left (fun m (i, n) -> StringMap.add n i m) map pairs

(* Translate a program in AST form into a bytecode program. Throw an
exception if something is wrong, e.g., a reference to an unknown
variable or function *)

let translate (others, functions) =

(* Assign indexes to function names *)
let function indexes = string map pairs StringMap.empty
(enum 1 1 (List.map (fun £ -> f.fname) functions)) in

(* Translate a function in AST form into a list of bytecode statements *)
let translate env fdecl =

(* Bookkeeping: FP offsets for locals and arguments *)

let num params = List.length fdecl.params

and num locals = List.length fdecl.locals
and local offsets = enum 1 1 (get names fdecl.locals)
and param offsets = enum (-1) (-2 (get names fdecl.params) in

let env = { env with local index = string map pairs

StringMap.empty (local offsets @ param offsets) } in
(*

Define ast members

*)

let typ = function
Integer(i)-> Ast.Int
| String(s) -> Ast.Str
| Array(a) -> Ast.Arr
| Id(i) -> Ast.Any
| Null -> Ast.Any

in let rec term = function
| Id id -> (try [Lod (StringMap.find id env.local index)]
with Not found -> raise (Failure ("cannot reference undeclared variable " ~ id)))
| Integer i -> [Int i]
| String s -> [Str s]
| Array a -> let 1 = List.length a in
if (1>0) then (

let £ = (if typ (List.hd a) = Ast.Str then 1 else 0) in
(List.concat (List.map term a)) @ [Arr ((1), £)])
else [Arr (0, 0)]
| Null -> []
in let rec expr = function

Term (a) -> term a
| Call (fname, args) -> (try

(List.concat (List.map expr (List.rev args))) @

[Jsr (StringMap.find fname env.function index)]
with Not found -> raise (Failure ("undefined function

noA

fname)))

| Range (id, al, a2) -> term al @ term a2 @ term id @ [Opr (Ast.Rng, typ a2, 3)] (* Opr op typ args *)
| Binop (e, op, a) -> expr e @ term a @ [Opr (op, (typ a), 2)1]
| Unop (e, op) -> expr e @ [Opr (op, Ast.Int,1l)]
in let rec stmt = function
Block sl -> List.concat (List.map stmt sl)
| Return e -> expr e @ [Ret num params]
| If (p, t) -> let t' = stmt t in expr p @ [Beg(l + List.length t')] @ t'
| While (e, b) —>
let b' = stmt b and e' = expr e in
[Bra (1+ List.length b')] @ b' @ e' @
[Bne (-(List.length b' + List.length e'))]

19

| Assign (s, e) -> expr e @ [Sto (StringMap.find s.varName env.local index)]
| SetAIndex(id, i, e) -> expr e @ term 1 @ term id @ [Opr(Ast.Sai, Ast.Arr , 3)]
| Output(t, e) -> expr e @ [Opr (Ast.Out, (typ t), 1)]

in [Ent num locals] @ (* Entry: allocate space for locals ¥*)
stmt (Block fdecl.body) @ (* Body *)
[Int 0; Ret num params] (* Default = return 0 *)

in let env = { function_index = function_ indexes;

local index = StringMap.empty } in

(* Code executed to start the program: Jsr main; halt *)
let entry function = try

[Jsr (StringMap.find "MAIN" function indexes); HIlt]
with Not found -> raise (Failure ("no \"MAIN\" function"))
in

(* Compile the functions *)
let func bodies = entry function :: List.map (translate env) functions in

(* Calculate function entry points by adding their lengths *)
let (fun offset list,) = List.fold left

(fun (1,i) £ -> (i :: 1, (i + List.length f))) ([]1,0) func bodies in
let func offset = Array.of list (List.rev fun offset list) in

(* Concatenate the compiled functions and replace the function
indexes in Jsr statements with PC values *)
text = Array.of list (List.map (function
Jsr i when i > 0 -> Jsr func offset. (i)
| _as s -> s) (List.concat func bodies))

8.6 Execute.ml

open Ast
open Bytecode

(* Stack layout just after "Ent":

<-- SP
Local n
Local 0
Saved HC
Saved FP <-- FP

Saved PC
Arg O

Arg n *)
let execute prog prog d =

let stack = Array.make 1024 0
and heap = Array.make 1024 "" in

(** maintenance tools *)
(* print debug statements *)
let debug fp sp pc hc =

print string "stack = "; Array.iteri (fun index value ->
if (index < sp) then print string
(string_of int index ~ ":" ~ string of int value ~ " ")) stack;
print string "\nheap = "; Array.iteri (fun index value ->
if (index < hc) then print string
(string_of int index ~ ":" ~ value ~ " ")) heap;
primt_emcllimg T\m=—=ssssmmmmsmss======= Mg

print endline ((string of int pc) ~ ": " %

A

Bytecode.string of stmt prog.text. (pc)
" (fp:" (string of int fp) *

"; sp:" ~ (string of int sp)
"; hc:" ~ (string of int hc) ~ ") -->")

A

(** execution helper functions *)

(* add string to heap; return a heap pointer to that string *)
in let set S hc str =
heap. (hc) <- str; hc
(* get an int pointer to the string on the heap *)
in let get S key = if key = -1 then ""
else heap. (key)

(* allocate a new array on the heap *)
in let new A hc 1 f =

let t = (1>0) in match (t,f) with
(* array with pointers to its strings immediately before it on heap *)
(true, 1) -> let rec a = function

0 -> "

| len -> (string of int (hc-len)) ~ ";" ~ (a (len-1))

in set_S hc (a 1)
(* alloc an array of size 1 with null pointers *)

| (true, 0) -> let rec a = function
O -> nn
| len -> (string of int (-1)) ~ ";" * (a (len-1))

in set_S hc (a 1)
(* empty array pointer *)
| (false, 0) -> set S hc ""
| _ -> hc
(* save an array's string on the heap *)
in let set A ref hc a =
set S hc (String.concat ";" (List.map string of int (Array.to list a)))
(* returns int list with pointers to strings on heap *)
(* string Array -> int -> int list *)
in let get A ref key =
let a _ref strlList = Str.split (Str.regexp ";") heap. (key) in
List.map int of string a ref strlList
(* list of pointer ints -> list of actual strings *)
in let get A key =
let a = get A ref key
and value k = match k with -1 -> "" _ —> (heap. (k)) in
List.map value a

(* set int values for bools *)

in let boolean i = if i then 1 else O
in let booli i = if (i=1) then true else false
in let nbooli i1 = if (i=0) then true else false

(** enter program execution *)
in let rec exec fp sp pc hc =
if (d = 1) then debug fp sp pc hc ;
match prog.text. (pc) with
Int i -> stack.(sp) <- 1 ; exec fp (sp+tl) (pc+l) hc
* add a string to the heap *)

(

| Str s -> stack. (sp) <- set S hc s; exec fp (spt+l) (pc+tl) (hc+l)
(* add an array ref indicating length to the heap *)

| Arr (1, f) -> stack. (sp) <- new A hc 1 f; exec fp (sp+l) (pctl) (hc+l)
| Drp -> exec fp (sp-1l) (pct+l) hc (* Discard a value *)

|

Opr (op, typ, args) -> (match (typ, args) with
(* Rng of string *)
(Ast.Str,3) -> let b = stack. (sp-2) and n = stack. (sp-1)
and s = get S stack. (sp-3) in
let £ = (Str.string after (Str.string before s (nt+l)) b) in
stack. (sp-3) <- set S hc f; exec fp (sp-2) (pc+l) (hc+l)

21

| (Ast.Arr,3) -> (match op with
Sai -> let e = stack. (sp-3) and i = stack. (sp-2)
and a = Array.of list (get A ref stack.(sp-1)) in (* yields int array *)
stack. (sp-3) <- set S a. (i) (get S e); exec fp (sp-2) (pc+l) (hc+l)
| Rng -> let b = stack.(sp-2) and n = stack. (sp-1)
and a = get A ref stack. (sp-3) in
let £ = Array.sub (Array.of list a) b (n-b+l) in
stack. (sp-3) <- set A ref hc f; exec fp (sp-2) (pc+l) (hc+l)
| -> exec fp sp (pct+l) hc)
(* binops for stack arithmetic/boolean eval of ints *)
| (Ast.Int,2) -> let opl = stack. (sp-2) and op2 = stack. (sp-1) in
stack. (sp-2) <- (match op with

Add -> opl + op2
| Sub -> opl - op2
| Egq -> boolean (opl = op2)
| Neqg -> boolean (opl != op2)
| Lt -> boolean (opl < op2)
| Leqg -> boolean (opl <= op2)
| Gt -> boolean (opl > op2)
| Geqg -> boolean (opl >= op2)
| And -> boolean ((booli(opl) && booli (op2)))
| Or -> boolean ((booli(opl) || booli(op2))));

exec fp (sp-1) (pc+l) hc
| (Ast.Str,2) -> let opl = get S(stack. (sp-2)) in (match op with
Vat -> let op2 = stack. (sp-1) in
stack. (sp-2) <- set_S hc (String.make 1 opl.[op2]); exec fp (sp-1) (pc+l) (hc+l)
| Add -> let op2 = get S(stack. (sp-1)) in
stack. (sp-2) <- set_S hc (opl * op2); exec fp (sp-1) (pc+l) (hc+l)

| Egq -> let op2 = get S stack. (sp-1) in
stack. (sp-2) <- boolean (nbooli (String.compare opl op2)); exec fp (sp-1) (pc+l) (hc)
| Neqg -> let op2 = get S stack. (sp-1) in
stack. (sp-2) <- boolean (not (nbooli(String.compare opl op2))); exec fp (sp-1) (pc+l) (hc))

| (Ast.Any,1) -> let msg = get S stack. (sp-1) in print endline msg; exec fp (sp) (pc+l) (hc)

| (Ast.Arr,2) -> (match op with
Vat -> let i = stack. (sp-2) and a = Array.of list (get A ref stack. (sp-1)) in
stack. (sp-2) <- a.(i); exec fp (sp-1) (pc+l) (hc)

| Add -> let al = (get A ref stack.(sp-2)) and a2 = (get A ref stack. (sp-1)) in
stack. (sp-2) <- set A ref hc (Array.of list(al @ a2)); exec fp (sp-1) (pctl)
(hc+1)
| Egq -> let al = (get A stack.(sp-2)) and a2 = (get A stack.(sp-1)) in
stack. (sp-2) <- boolean(al = a2); exec fp (sp-1) (pc+l) (hc)
| Neg -> let al = (get A stack. (sp-2)) and a2 = (get A stack. (sp-1)) in
stack. (sp-2) <- boolean(al <> a2); exec fp (sp-1) (pc+l) (hc))
| (Ast.Int ,1) -> let opl = stack. (sp-1) in (match op with
Not -> stack. (sp-1) <- boolean(nbooli (opl));
exec fp (sp) (pct+l) (hc))
| (Ast.Str ,1) -> let opl = get S stack. (sp-1) in (match op with
(** TBD In -> let input = "1" in
stack. (sp-1) <- set S hc input; exec fp (sp-1) (pc+l) (hc+l)
let filename = "test" in if Sys.file exists then
else raise(Failure "Input file (" »~ filename ~ ") not found") &)
| Len -> stack. (sp-1) <- String.length opl; exec fp (sp) (pc+l) (hc))
| (Ast.Arr ,1) -> (match op with
| Len -> stack. (sp-1) <- List.length (get A ref stack.(sp-1)); exec fp (sp-1) (pc+l) (hc)))
| Lod i -> stack. (sp) <- stack. (fp+i) ; exec fp (sptl) (pc+l) hc
| Sto i -> stack. (fp+i) <- stack. (sp-1) ; exec fp sp (pc+l) hc
| Jsr 1 -> stack. (sp) <- pc + 1 ; exec fp (spt+l) i hc
| Ent i -> stack. (sp) <- fp; stack. (spt+l) <-hc; exec (sp) (sp+i+2) (pc+l) hc
| Ret i -> let new fp = stack. (fp) and new sp = stack. (fp-i-1)

and new_pc = stack. (fp-1) and new_hc = stack. (fp+l) in
stack. (fp-i) <- stack. (sp-1) ;
exec new_fp new_sp new_pc new_hc

| Beq 1 -> exec fp (sp-1) (pc + if stack.(sp-1) = 0 then i else 1) hc

| Bne i -> exec fp (sp-1) (pc + if stack.(sp-1) != 0 then i else 1) hc
| Bra i -> exec fp sp (pc+i) hc
| H1t -> ()

in exec 0 0 0 O

8.7 scam.ml
type action = Ast | Invalid | Bytecode | Compile

lee =
if Sys.argv.(l) = "-h" then
print endline "help is on the way!" (* do nothing. *)
else
let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv. (1) [("-a", Ast);

("-b", Bytecode);
("-c", Compile)]
else Compile in
let debug = if (Array.length Sys.argv > 2) && (Sys.argv.(2) = "-d") then 1 else 0 in
let lexbuf = Lexing.from channel stdin in
let program = Parser.program Scanner.token lexbuf in
(* let program = Semantics.check program in%*)
match action with
Ast -> let listing = Ast.string of program program
in print string listing
| Bytecode -> let listing =
Bytecode.string of prog (Compile.translate program)
in print endline listing
| Compile -> Execute.execute prog (Compile.translate program) debug

8.8 Semantics.mlx (does not compile, but hey I tried)
open Ast

let stab = ref []

let print stab s = print endline "stab = ";
List.iter (fun v -> print string (Ast.string of var v)) s

let typestring = function
Ast.Int-> "INT"
| Ast.Str -> "STR"
| Ast.Arr -> "ARR"
| Ast.Any -> "ANY"

let rec term = function
Integer i -> Ast.Int
| String(s) -> Ast.Str
| Array(a) -> Ast.Arr
(* check the stab for a var and get its explicit or dynamic type *)
| Id(i) -> let v = try (List.find (fun x -> x.varName = i) !stab)
with Not found-> raise (Failure ("Undeclared variable"))
in if (Ast.Any <> v.varType) then v.varType
(*else(if (v.dType <> Ast.Any) then v.dType *)
| Null -> Ast.Any

let rec expr = function

Term (a) -> term a

(** bound to cause problems *)

| Call (fname, args) —-> Ast.Any

| Range (id, al, a2) -> let tl = term al and t2 = term a2 and i = term id in
if ((tl = Ast.Int) && (t2 = Ast.Int) && (i <> Ast.Int)) then i else
raise (Failure ("Invalid sub-string/sub-array expression"))

| Binop(e, o, a) —-> let opl = expr e and op2 = term a in

let eg = 1if (opl = op2) then op2 else raise (Failure

23

("A binary operation was attempted on incompatible types"))
in let ints i1 = if (i = Ast.Int) then i else raise (Failure
("An arithmetic/boolean operation was attempted on non-integers"))

in (match o with
Vat -> let m = expr e in

if (m <> Ast.Int)

else raise (Failure ("Invalid string/array reference index supplied"))

then (
let i = term a in (
if (i = Ast.Int)
then i
)
)
else raise (Failure ("Invalid string/arra

| Lt -> ints eq

| Leg -> ints eq

| Gt -> ints eq

| Geg -> ints eq

| And -> ints eq

| Or -> ints eq

| Sub -> ints eq
| _ => eq)

| Unop(v, o) -> (match o with

Len -> let e = expr v in if(e <> Ast.Int) then e e

y"))

lse raise (Failure

("Cannot compute the length of this argument"))

| Not -> let e = expr v in if(e = Ast.Int) then e

else raise (Failure

("An boolean operation was attempted on non-integers"))

| In -> let e = expr v in if(e <> Ast.Arr) then e
("Invalid input source")))

let rec stmt = function
Block(stmts) -> List.iter stmt stmts

| Return(e) -> expr e; ()

| If(e, s) —-> let el = expr e in if(el = Ast.Int) then stmt s e
("Invalid predicate in If statement")); ()

| While(e, s) —-> let el = expr e in if(el = Ast.Int) then stmt s
("Invalid predicate in While statement"))

| SetAIndex (id, i, e) -> let tl = term id and t2= term i and el

else raise (Failure

lse raise (Failure

else raise (Failure

0

= expr e in

if((tl = Ast.Arr) && (t2 = Ast.Int) && (el <> Ast.Int)) then el

else raise (Failure ("Invalid array index assignment")) 3
| Output(t, e) -> Ast.Any ; ()
(* set the vartype during assignment if it was not initialized *
(* if the var has an explicit type, make sure the expr has that
| Assign(v, e) -> let eT = expr e in (if (v.varType = Ast.Any) t
else (if (v.varType <> eT)
then raise

(Failure ("Invalid assignment: "
))
stab := v::!stab; Ast.Any; ()
(*
let type check func =
{fname = func.fname;
params = func.params;
body = List.map (fun s -> stab:=[]; stmt s) func.body;

locals = func.locals}
*)
let check (others, functions) =
List.map (fun s -> stab:=[]; stmt s) functions.body;
(*let valid typed funs = List.map type check functions in
(others, functions);

0

)
type *)
hen (v.dType <- eT)

~ Ast.string of var v ©~ " to

(others, valid typed funs);

~ typestring eT))

*)

24

25

