
Sriramkumar Balasubramanian
Evan Drewry
Timothy Giel

Nikhil Helferty

aML – “a-Mazing Language”

Can be used to solve mazes by feeding

instructions to a bot which is located at

the entrance to the maze

The maze can either be defined by the

user in the form of text files or can be

randomly generated by the standard

library functions

The language serves as an instruction set

to the bot, hence the movement of the bot

determines accessing of various data

AML is designed to not only make the

process of solving mazes easier for a

programmer, but also to introduce

programming to the common man

through mazes

A brief introduction to syntax

 Java/C-like syntax (not exact) enabling

you to move a bot around a maze

Use functions, data types for more

complex behavior than just a sequence of

moves

AML provides a visualization of a bot with

your program navigating the maze

Maze provided in .txt file or randomized

Have a limited set of available datatypes
• Integer

• Boolean

• Cell

• List<datatype> (FIFO)

Functions can either return a variable
type (x():Integer { }) or be void

Can take parameters as well
The main function must be void,

parameterless

Maze text format:

5 6

0 1 1 1 0 0

1 1 2 0 1 1

0 0 1 1 1 0

0 1 1 0 1 3

0 3 1 0 1 1

• First two numbers are # rows and

columns

• Then an integer follows for every

cell in row x columns maze

• 0’s are “holes”

• 1’s are “walkable” cells

• 2 is the start point (only one)

• 3’s are targets (multiple possible)

5 6

0 1 1 1 0 0

1 1 2 0 1 1

0 0 1 1 1 0

0 1 1 0 1 3

0 3 1 0 1 1

A very dumb bot:

#load-random

// function that is run by program initially

main():void {

 goRight();

}

function goRight():void {

 cell c := (CPos); // variables at start

 move_R(); // moves the bot to the

right

 if (NOT isTarget(c)) {

 goRight();

 };

}

How to compile

• (Run “make” to

construct AML)

• Run aml on .aml source

(for example, aml -c

example.aml)

• Run the newly created

java code: java

example

#load-random

main():void{

 integer x := gcd(7,49);

 print(x);

 exit();

}

function gcd(integer n, integer m):integer{

 if(n = m){

 return n;

 }

 else{

 if (n > m) {

 return gcd(n - m, m);

 }

 else{

 return gcd(m - n,n);

 }

 }

}

AML will not stop your bot from looping

aimlessly into oblivion
• Could have prevented this possibility in previous

program by, for example, limiting the number of

attempts with an Integer

Can design much more complex

functions using Lists, recursion, bot’s

“memory”

Use the revert() function to backtrack

Creating the system

1 • Lexical Analyzer

2 • Parser

3 • Semantic Analysis

4 • Translator

5 • Top-level

assignment – type consistency
 function calls – two pass run
Unique main and function definitions

checking
Checking for return statements inside

“if’s”
Functions – actual and formal parameters
Validity Checking: Program -> Function

-> Statement list -> Statement ->
Expression

Do’s and Don’ts for the future

Start early

Split up work s.t. team members aren’t

blocking each others progress

Keep repository updated, use

incremental development style

Don’t plan for “a lot” of features

prematurely

Unit testing

Figure out what tools exist and use them!
• OCAMLRUNPARAM='p’

• ocamldep for makefiles

Don’t assume anything about your

teammates; figure out their strengths and

split up the work accordingly

