TrML

Triangle Manipulation Language

Qishu Chen
Xuechen Feng
Lianhao Qu
Yu Wan
Wanqiu Zhang

Columbia University
December 2012

Introduction-TrML

- A simple programming language that allows user to express trigonometry concept, and construct/solve complex trigonometry problems.
* C-like structure
* Functional language
- Allow programmers to easily express trigonometry concepts and solve trigonometry problems.

TrML Tutorial

- There are two data types in TrML: value and triangle. Value is a floating point number, and triangle is a triangle in 2D plane.
@This is a comment
@assign 4.0 to value i
value i 4.0;
@assign three vertex values to triangle ABC
triangle ABC V [(1.1, 2.2), (3.3, 4.4), (5.5, 6.6)];
@assign three side-length values to triangle DEF triangle DEF L [4.2, 3.5, 3.6];

TrML Tutorial

@Sample code: "Hello World!"
initialize:
rule:
operation:
prints("Hello \nWorld! \n");

TrML Tutorial

initialize:

value i 4.0;
value sum 0.0;
rule:
operation:

$$
\begin{aligned}
\text { while }(i & >0)\{ \\
\text { sum } & =\text { sum }+i ; \\
i & =i-1 ;
\end{aligned}
$$

\}
prints("The sum of ");
printv(i);
prints(" is:")
printv(sum);
@the result should be: The sum of 4.0 is 10.0

Block Diagram

AST

Compiler

- Internal structure:
- Rule table
- Environment table
- Operation variable
- One stack register
- Code structure:
- Environment variable followed by "rul" followed by rules defination followed by "opt" followed by operations definition

Interpreter

- Java Based
- Two arguments lists
- Rule Argument, [rule counter]
- Operation Argument, [operation counter]
- Global variable list
- Register stack
- 30+ instruction sets

Summary

- Main goals:
* Acquire language and compiler design experience
*Have a coherent design and implement it correctly and in-time
- Outcome:
*TrML is a comprehensive and simple language
* Implementation was finished before the deadline and the compiler follows the design specification

Summary

Suggestions for the future:

- Getting a head start:

All group members were on the same page with starting early, but actually coordinating and forming the right pace for the team could still be improved.

- Pick a topic with passion:

Pick a topic that most members are passionate about will make the experience worthwhile and enjoyable.

Testing code

- @ keyw||d "initialize:" starts triangle initialization phase
- initialize:
- @ initialize triangle with 2-D vertex location
- triangle ABC V $[(1.1,2.2),(3.3,4.4),(5.5,6.6)] ;$
- @initialize triangle with line segment length
- triangle DEF L [4.2, 3.5, 3.6];
- value agl 10.0;
- value opq 5.0;
- @ Keyw||d "rules:" starts rules construction phase
- rules:
- identical_triangle (triangle Tri_1, triangle Tri_2)
- (
- [[triangle Tri_1.sideA == triangle Tri_2.sideA] \&\& [triangle Tri_1. sideB == triangle Tri_2. sideB] \&\& [triangle Tri_1. sideC == triangle Tri_2. sideC]]
- || [[triangle Tri_1.sideA $==$ triangle Tri_2.sideB] \&\& [triangle Tri_1. sideB ==triangle Tri_2. sideC] \&\& [triangle Tri_1. sideC == triangle Tri_2. sideA] $]$
- || [[triangle Tri_1. sideA == triangle Tri_2. sideC] \&\& [triangle Tri_1. sideB ==triangle Tri_2. sideA] \&\&[triangle Tri_1. sideC == triangle Tri_2. sideB]]
-) \{true $\}$
- @ Explain angleC in terms of sides
- @ This is a calculation rule
 triangle ABC.sideA *triangle ABC.sideB) $\}$;
- @ keyw||d "operations:" starts operation \&\& calculation phase
- operations:
- $\quad \mathrm{agl}=$ rule identical_triangle (triangle ABC , triangle ABC);
- \quad opq = 5.0;
- printv (value agl);
- if (value agl) \{
- \}
- if (1.0)
- \{
- $\}$
prints ("ABC and DEF are identical");

