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Overview and Motivation 
The Agent-Based Model (ABM) describes a system where the interactions between autonomous agents 

(individuals) are simulated and the global patterns and effects of such interactions as a whole can be 

observed and assessed. ABMs have already been employed in various applications including analyzing 

traffic congestion, modeling social networks, predicting species populations and distributions, etc.  

To facilitate building ABMs without having to start from scratch or engaging complex domain toolkits, 

Multi-Agent Simulation Language, or MASL, is proposed. MASL provides concise syntax and other 

convenient facilities for users to better focus on describing and solving the problems at hand. 

Objectives 
Before discussing the objectives we expect to achieve with MASL, here is a summary of essential 

elements within a single agent in an ABM. 

 Properties representing its state 

 Actions that may change its properties 

 Connections to some other agents in the environment, which may vary over time 

 Heuristic rules that trigger certain actions based on the states of other agents connected to it 

Given this, some most important objectives of designing MASL are listed below. 

 Provide general programming constructs for specifying the states, actions and decision making 

process of agents, so that the ABMs implemented in MASL will not be limited to certain domains. 

 Provide facilities (including succinct syntax and optimized underlying data storage) to define and 

access connections among agents efficiently. 

 Let the users focus on agents and their connections, and handle the details of running 

simulations behind the scene. Meanwhile, the infrastructure for running simulations should still 

be configurable via MASL itself. 



Features 
To achieve the objectives listed in the previous section, the following features are proposed for MASL. 

Prototype-Based Programming 
It is natural to develop an ABM with the object-oriented paradigm in mind, since every agent can be 

represented as an object with a set of properties to maintain their internal state, as well as the 

capabilities to perceive the environment, make decisions and perform actions. In MASL, we take the 

prototype-based approach to provide support for object-oriented programming, similar to that in 

JavaScript. Compared with using classes, prototyping enables greater flexibility for adding features to 

individual agents. 

Built-in State Automata 
In many ABMs, agents may not only change their properties but also alter or adapt their actions based 

on their experience in the environment to simulate conditional behaviors or adaptation. This may be 

achieved via MASL’s built-in support for state automata. In MASL, every object is a state automaton with 

user-defined states, each containing code specifying conditional actions. An object can also transfer 

from one state to another via such code. 

Flexible and Efficient Container Access 
There may be a large number of agents and connections in an ABM. Moreover, agents may be spawned 

or destroyed in the simulation process, and connections may also evolve over time. Thus, flexible and 

efficient containers are required to store these elements for frequent access, and MASL has a bunch of 

support for achieving this. 

Clear Boundary for Core Language 
The core part of MASL only concerns the logic of ABMs. However, MASL also comes with a minimal 

standard library that provides I/O functionality (such as data visualization and file access) and other 

utilities (such as basic mathematic library). These features may make it handy to explore many more 

possibilities with MASL. 

Configurable Execution Environment 
One big advantage MASL has is that it frees user from implementing the complex process of multi-agent 

simulation themselves. The users are mainly concerned with the functionality of agents. Meanwhile, the 

execution environment of the simulation is configurable by within MASL to suit different applications. 

Sample and Syntax 
To give a taste of MASL, in this section we will provide a sample program written in MASL and highlight 

some important features of MASL. 



Sample: Conway’s Game of Life 
The cellular automaton is an important form of ABM, and Conway’s Game of Life is a classic application 

of cellular automata (please refer to http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life for a 

brief introduction). Below is a minimal MASL implementation with comments. 

/* 
 * 
 * Conway's Game of Life implemented using MASL. 
 * Please refer to http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life 
 * for a brief description about the rules of this game. 
 * 
*/ 
 
// Define the cell in the game as an object. 
 
object Cell { 
  
 // The initial state of the cell. 
 
 state Init { 
 
  object[] neighbors = container[{ 
   (x - 1, y - 1), (x - 1, y), (x - 1, y + 1), 
   (x, y - 1), (x, y + 1), 
   (x + 1, y - 1), (x + 1, y), (x + 1, y + 1) 
  }]; 
 } 
  
 // If the cell is alive, it will only live on with 2 or 3 live neighbors. 
  
 state Live { 
 
  if(countLiveNeighbors() < 2 || countLiveNeighbors() > 3) ->Dead 
 } 
  
 // If the cell is dead, only when exactly 3 live neighbors will render it alive. 
  
 state Dead { 
 
  if(countLiveNeighbors() == 3) ->Live 
 } 
 
 // The coordinate of the cell. 
 
 int x, y; 
  
 // A routine counting the number of live neighbors. 
  
 int countLiveNeighbors() { 
  
  return neighbors.count(boolean (object cell) {return cell@Live;}); 
 } 
} 
 
// Initialize the container for all the cells as a 2D array. 
 
container = Array {d = 2, size = (60, 80)}; 
 
// fill the container with cells in random states. 
 
for((int, int) (x, y) : {(0, 0)..(59, 79)}) { 
  
 object cell; 
 if(math.randomInt() % 2 == 0) cell = Cell {.x = x, .y = y}->Live; 
 else cell = Cell {.x = x, .y = y}->Dead; 
 container[(x, y)] = cell; 
} 
 

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


// Set the time step (in milliseconds) and start the simulation. 
 
timeStep = 30; 
start(); 
stop(10000); 

I/O functionality is not involved in this simple program. In fact, logic models and I/O such as visualization 

can be clearly separated while easily cooperated using MASL. The details will be covered in future works. 

There are three aspects worth mentioning regarding the code above. 

Objects with States 
In MASL, every object has one or several states, and is in exactly one of the states at a given time, known 

as its current state. During each step within the simulation loop, the code in the current state gets 

executed automatically. An object can enter another state via this code, too. 

The existence of states introduces state wide scope. Items defined within a state are invisible outside 

this state. 

To make accessing states easier, we introduced two operators: -> and @. -> transfers an object to a 

given state, and @ is used check if an object is in a given state. -> can only appear within a state or when 

initializing an object. 

cell = Cell {x = x, y = y}->Live; 

Like in this statement, an object is initialized by setting some of its member variables and optionally 

specifying the state it shall jump in. Every object is in a special state named Init upon initialization. 

Once initialized, it may go to either the state given in the initialization statement or some state specified 

within the Init state. When both present, the latter dominates. If neither presents, the object will enter 

the Null state and will not be updated in the simulation loop. 

Simulation as the Global Object 
You may notice that when accessing container, timeStep and start(), we did not specify who they 

belong to. In fact they are all members of a global object that is not explicitly referred to. This object is 

known as the Simulation object. Actually, a single MASL program usually corresponds to an ABM 

simulation. 

We can control or fine tune various aspects of an ABM simulation process via its members, such as 

specifying the type of container to be used for storing the agents (using container), setting the time 

elapse between consequent updates (using timeStep) and starting or stopping the simulation (using 

start() and stop()). 

Since the Simulation object can be implicitly referred to, for simple tasks, code in procedural 

programming style can be written on the topmost level (outside any) of a MASL source file directly. Such 

code is actually contained in the Init state of Simulation object. 



Support for Various Containers 
MASL provides native support for several types of containers commonly used in ABMs. 

In the Game of Life program, the cells are best stored in a rectangular 2-D array indexed by 2 integers. 

Actually rectangular n-D arrays are widely used in cellular automata programs. So we provide 

convenient syntax for accessing n-D arrays, as seen in 

  object[] neighbors = container[{ 
   (x - 1, y - 1), (x - 1, y), (x - 1, y + 1), 
   (x, y - 1), (x, y + 1), 
   (x + 1, y - 1), (x + 1, y), (x + 1, y + 1) 
  }]; 

where multiple elements stored in an n-D array  are retrieved as a 1-D array at a time, and 

(int, int) (x, y) : {(0, 0)..(59, 79)} 

for generating a 1-D array of n-D dimensions (similar to generating a Range object in Ruby) to be used in 

the iteration. 

MASL also natively supports some other containers, such as one for accommodating agents in a 

continuous 2-D space and a general purpose list. All the specialized containers are implemented with 

optimization so that various operations can be performed on them efficiently, such as searching, adding 

or removing an object. 

Convenient constructs for general container (list) manipulation like mapping, filtering, etc. are available 

by allowing passing an anonymous function as a parameter. 

  return neighbors.count(boolean (object cell) {return cell@Live;}); 

There are two important aspects of all containers. First, all kinds of containers can be iterated, and can 

be customized by users somehow. In this way, the user can choose any one that is proper for a 

simulation. Second, since there are many agents to be updated during a time step, the container 

guarantees this work to be done correctly and efficiently, i.e. it keeps track of all the changes of all the 

agents to be done in a time step and perform the update consistently, even without the user’s 

knowledge. 
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