
M.A.S.L.
(Multi-Agent Simulation Language)

COMSW4115 Programming Languages & Translators

Project Proposal

Jiatian Li Wei Wang Chong Zhang Dale Zhao

jl3930 ww2315 cz2276 dz2242

Overview and Motivation
The Agent-Based Model (ABM) describes a system where the interactions between autonomous agents

(individuals) are simulated and the global patterns and effects of such interactions as a whole can be

observed and assessed. ABMs have already been employed in various applications including analyzing

traffic congestion, modeling social networks, predicting species populations and distributions, etc.

To facilitate building ABMs without having to start from scratch or engaging complex domain toolkits,

Multi-Agent Simulation Language, or MASL, is proposed. MASL provides concise syntax and other

convenient facilities for users to better focus on describing and solving the problems at hand.

Objectives
Before discussing the objectives we expect to achieve with MASL, here is a summary of essential

elements within a single agent in an ABM.

 Properties representing its state

 Actions that may change its properties

 Connections to some other agents in the environment, which may vary over time

 Heuristic rules that trigger certain actions based on the states of other agents connected to it

Given this, some most important objectives of designing MASL are listed below.

 Provide general programming constructs for specifying the states, actions and decision making

process of agents, so that the ABMs implemented in MASL will not be limited to certain domains.

 Provide facilities (including succinct syntax and optimized underlying data storage) to define and

access connections among agents efficiently.

 Let the users focus on agents and their connections, and handle the details of running

simulations behind the scene. Meanwhile, the infrastructure for running simulations should still

be configurable via MASL itself.

Features
To achieve the objectives listed in the previous section, the following features are proposed for MASL.

Prototype-Based Programming
It is natural to develop an ABM with the object-oriented paradigm in mind, since every agent can be

represented as an object with a set of properties to maintain their internal state, as well as the

capabilities to perceive the environment, make decisions and perform actions. In MASL, we take the

prototype-based approach to provide support for object-oriented programming, similar to that in

JavaScript. Compared with using classes, prototyping enables greater flexibility for adding features to

individual agents.

Built-in State Automata
In many ABMs, agents may not only change their properties but also alter or adapt their actions based

on their experience in the environment to simulate conditional behaviors or adaptation. This may be

achieved via MASL’s built-in support for state automata. In MASL, every object is a state automaton with

user-defined states, each containing code specifying conditional actions. An object can also transfer

from one state to another via such code.

Flexible and Efficient Container Access
There may be a large number of agents and connections in an ABM. Moreover, agents may be spawned

or destroyed in the simulation process, and connections may also evolve over time. Thus, flexible and

efficient containers are required to store these elements for frequent access, and MASL has a bunch of

support for achieving this.

Clear Boundary for Core Language
The core part of MASL only concerns the logic of ABMs. However, MASL also comes with a minimal

standard library that provides I/O functionality (such as data visualization and file access) and other

utilities (such as basic mathematic library). These features may make it handy to explore many more

possibilities with MASL.

Configurable Execution Environment
One big advantage MASL has is that it frees user from implementing the complex process of multi-agent

simulation themselves. The users are mainly concerned with the functionality of agents. Meanwhile, the

execution environment of the simulation is configurable by within MASL to suit different applications.

Sample and Syntax
To give a taste of MASL, in this section we will provide a sample program written in MASL and highlight

some important features of MASL.

Sample: Conway’s Game of Life
The cellular automaton is an important form of ABM, and Conway’s Game of Life is a classic application

of cellular automata (please refer to http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life for a

brief introduction). Below is a minimal MASL implementation with comments.

/*
 *
 * Conway's Game of Life implemented using MASL.
 * Please refer to http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
 * for a brief description about the rules of this game.
 *
*/

// Define the cell in the game as an object.

object Cell {

 // The initial state of the cell.

 state Init {

 object[] neighbors = container[{
 (x - 1, y - 1), (x - 1, y), (x - 1, y + 1),
 (x, y - 1), (x, y + 1),
 (x + 1, y - 1), (x + 1, y), (x + 1, y + 1)
 }];
 }

 // If the cell is alive, it will only live on with 2 or 3 live neighbors.

 state Live {

 if(countLiveNeighbors() < 2 || countLiveNeighbors() > 3) ->Dead
 }

 // If the cell is dead, only when exactly 3 live neighbors will render it alive.

 state Dead {

 if(countLiveNeighbors() == 3) ->Live
 }

 // The coordinate of the cell.

 int x, y;

 // A routine counting the number of live neighbors.

 int countLiveNeighbors() {

 return neighbors.count(boolean (object cell) {return cell@Live;});
 }
}

// Initialize the container for all the cells as a 2D array.

container = Array {d = 2, size = (60, 80)};

// fill the container with cells in random states.

for((int, int) (x, y) : {(0, 0)..(59, 79)}) {

 object cell;
 if(math.randomInt() % 2 == 0) cell = Cell {.x = x, .y = y}->Live;
 else cell = Cell {.x = x, .y = y}->Dead;
 container[(x, y)] = cell;
}

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

// Set the time step (in milliseconds) and start the simulation.

timeStep = 30;
start();
stop(10000);

I/O functionality is not involved in this simple program. In fact, logic models and I/O such as visualization

can be clearly separated while easily cooperated using MASL. The details will be covered in future works.

There are three aspects worth mentioning regarding the code above.

Objects with States
In MASL, every object has one or several states, and is in exactly one of the states at a given time, known

as its current state. During each step within the simulation loop, the code in the current state gets

executed automatically. An object can enter another state via this code, too.

The existence of states introduces state wide scope. Items defined within a state are invisible outside

this state.

To make accessing states easier, we introduced two operators: -> and @. -> transfers an object to a

given state, and @ is used check if an object is in a given state. -> can only appear within a state or when

initializing an object.

cell = Cell {x = x, y = y}->Live;

Like in this statement, an object is initialized by setting some of its member variables and optionally

specifying the state it shall jump in. Every object is in a special state named Init upon initialization.

Once initialized, it may go to either the state given in the initialization statement or some state specified

within the Init state. When both present, the latter dominates. If neither presents, the object will enter

the Null state and will not be updated in the simulation loop.

Simulation as the Global Object
You may notice that when accessing container, timeStep and start(), we did not specify who they

belong to. In fact they are all members of a global object that is not explicitly referred to. This object is

known as the Simulation object. Actually, a single MASL program usually corresponds to an ABM

simulation.

We can control or fine tune various aspects of an ABM simulation process via its members, such as

specifying the type of container to be used for storing the agents (using container), setting the time

elapse between consequent updates (using timeStep) and starting or stopping the simulation (using

start() and stop()).

Since the Simulation object can be implicitly referred to, for simple tasks, code in procedural

programming style can be written on the topmost level (outside any) of a MASL source file directly. Such

code is actually contained in the Init state of Simulation object.

Support for Various Containers
MASL provides native support for several types of containers commonly used in ABMs.

In the Game of Life program, the cells are best stored in a rectangular 2-D array indexed by 2 integers.

Actually rectangular n-D arrays are widely used in cellular automata programs. So we provide

convenient syntax for accessing n-D arrays, as seen in

 object[] neighbors = container[{
 (x - 1, y - 1), (x - 1, y), (x - 1, y + 1),
 (x, y - 1), (x, y + 1),
 (x + 1, y - 1), (x + 1, y), (x + 1, y + 1)
 }];

where multiple elements stored in an n-D array are retrieved as a 1-D array at a time, and

(int, int) (x, y) : {(0, 0)..(59, 79)}

for generating a 1-D array of n-D dimensions (similar to generating a Range object in Ruby) to be used in

the iteration.

MASL also natively supports some other containers, such as one for accommodating agents in a

continuous 2-D space and a general purpose list. All the specialized containers are implemented with

optimization so that various operations can be performed on them efficiently, such as searching, adding

or removing an object.

Convenient constructs for general container (list) manipulation like mapping, filtering, etc. are available

by allowing passing an anonymous function as a parameter.

 return neighbors.count(boolean (object cell) {return cell@Live;});

There are two important aspects of all containers. First, all kinds of containers can be iterated, and can

be customized by users somehow. In this way, the user can choose any one that is proper for a

simulation. Second, since there are many agents to be updated during a time step, the container

guarantees this work to be done correctly and efficiently, i.e. it keeps track of all the changes of all the

agents to be done in a time step and perform the update consistently, even without the user’s

knowledge.

	Overview and Motivation
	Objectives
	Features
	Prototype-Based Programming
	Built-in State Automata
	Flexible and Efficient Container Access
	Clear Boundary for Core Language
	Configurable Execution Environment

	Sample and Syntax
	Sample: Conway’s Game of Life
	Objects with States
	Simulation as the Global Object
	Support for Various Containers

